
Sketch-n-Sketch:
Output-Directed Programming for SVG

Brian Hempel, Justin Lubin, Ravi Chugh

Direct Manipulation is Everywhere.

 2

Programming

 3

 4

ProgramRefactored
Program

Programming + Direct Manipulation?

Ordinary, Text-Based Programming

+
Direct Manipulation on Output

=
Output-Directed Programming

 5

Prior Output-Directed Programming

 6

Schreiber et al. (2017)
Transmorphic

McDirmid (2015, 2016)
APX

Hempel & Chugh (2016)
Sketch-n-Sketch 2016

Hanna (2005)
Vital

Kwok & Webster (2016)
Carbide Alpha

Chugh et al. (2016)
Live Synchronization SnS

Mayer et al. (2018)
Bidirectional SnS

Schuster & Flanagan (2016)

Wang et al. (2012)

Prior Output-Directed Programming

 7

Schreiber et al. (2017)
Transmorphic

McDirmid (2015, 2016)
APX

Hempel & Chugh (2016)
Sketch-n-Sketch 2016

Hanna (2005)
Vital

Kwok & Webster (2016)
Carbide Alpha

Chugh et al. (2016)
Live Synchronization SnS

Mayer et al. (2018)
Bidirectional SnS

Schuster & Flanagan (2016)

Wang et al. (2012)

 8

Hempel & Chugh
(UIST 2016)

Building on Sketch-n-Sketch 2016

 9

Building on Sketch-n-Sketch 2016

 10

Building on Sketch-n-Sketch 2016

 11

Building on Sketch-n-Sketch 2016

 12

Building on Sketch-n-Sketch 2016

 13

Building on Sketch-n-Sketch 2016

 14

Building on Sketch-n-Sketch 2016

 15

Building on Sketch-n-Sketch 2016

Want a
rhombus:

But tools
overly rigid!

What kinds of programs can
be constructed entirely through

output manipulations?

 16

Big Q

Contribution

 17

UI Insight 
DM on More Than Output!

Intermediate Value
Widgets

Expression Focusing

PL Insight 
Generic Tools, Too!

Generic Provenace
Tracing

Generic Refactorings

See Paper(but not SVG-specific)

Demo

 18

Rhombus with Veins

 19

Widgets for Intermediate Values

 20

Offsets

9/19/2019 Sketch-n-Sketch

file:///Users/brian/Documents/phd/more-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_Appendix/sketch-n-sketch-uist-2019/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo Redo Clean Up

Current �le: Untitled *

Run

⦀

Context: Program

points

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x, y] as point = [79, 89]

[x3, y3] as point3 = [272, 201]

[x2, y2] as point2 = [288, 176]

[x1, y1] as point1 = [221, 198]

points = [point1, point2, point3]

x1Offset = x + 102

svg (concat [

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Points
9/19/2019 Sketch-n-Sketch

file:///Users/brian/Documents/phd/more-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_Appendix/sketch-n-sketch-uist-2019/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo Redo Clean Up

Current �le: Untitled *

Run

⦀

Context: Program

points

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x, y] as point = [79, 89]

[x3, y3] as point3 = [272, 201]

[x2, y2] as point2 = [288, 176]

[x1, y1] as point1 = [221, 198]

points = [point1, point2, point3]

x1Offset = x + 102

svg (concat [

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Lists

9/19/2019 Sketch-n-Sketch

file:///Users/brian/Documents/phd/more-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_Appendix/sketch-n-sketch-uist-2019/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo Redo Clean Up

Current �le: Untitled *

Run

⦀

Context: Program

rhombusFunc

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x2, y2] as pt2 = [288, 176]

[x1, y1] as pt1 = [221, 198]

points = [pt1, pt2, pt3]

x1Offset = x + 102

rhombusFunc [cx, cy] halfW halfH =
 let y4Offset = cy - halfH in
 let x4Offset = cx + halfW in
 let y4Offset2 = cy + halfH in
 let x4Offset2 = cx - halfW in
 let pts = [[cx, y4Offset], [x4Offset,
 let [color, strokeColor, strokeWidth]
 polygon color strokeColor strokeWid

rhombus = rhombusFunc [79, 89] 49 78

circle1 = circle 0 [126, 359] 43

rhombus1 = rhombusFunc [455, 345] 49 78

svg (concat [
 [rhombus],

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

9/19/2019 Sketch-n-Sketch

file:///Users/brian/Documents/phd/more-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_Appendix/sketch-n-sketch-uist-2019/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo Redo Clean Up

Current �le: Untitled *

Run

⦀

Context: Program

points

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x, y] as point = [79, 89]

[x3, y3] as point3 = [272, 201]

[x2, y2] as point2 = [288, 176]

[x1, y1] as point1 = [221, 198]

points = [point1, point2, point3]

x1Offset = x + 102

svg (concat [

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Calls

9/19/2019 Sketch-n-Sketch

file:///Users/brian/Documents/phd/more-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_Appendix/sketch-n-sketch-uist-2019/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo Redo Clean Up

Current �le: Untitled *

Run

⦀

Context: Program

rhombusFunc

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x2, y2] as pt2 = [288, 176]

[x1, y1] as pt1 = [221, 198]

points = [pt1, pt2, pt3]

x1Offset = x + 102

rhombusFunc [cx, cy] halfW halfH =
 let y4Offset = cy - halfH in
 let x4Offset = cx + halfW in
 let y4Offset2 = cy + halfH in
 let x4Offset2 = cx - halfW in
 let pts = [[cx, y4Offset], [x4Offset,
 let [color, strokeColor, strokeWidth]
 polygon color strokeColor strokeWid

rhombus = rhombusFunc [79, 89] 49 78

circle1 = circle 0 [126, 359] 43

rhombus1 = rhombusFunc [455, 345] 49 78

svg (concat [
 [rhombus],

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

9/19/2019 Sketch-n-Sketch

file:///Users/brian/Documents/phd/more-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_Appendix/sketch-n-sketch-uist-2019/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo Redo Clean Up

Current �le: Untitled *

Run

⦀

Context: Program

rhombusFunc

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x2, y2] as pt2 = [288, 176]

[x1, y1] as pt1 = [221, 198]

points = [pt1, pt2, pt3]

x1Offset = x + 102

rhombusFunc [cx, cy] halfW halfH =
 let y4Offset = cy - halfH in
 let x4Offset = cx + halfW in
 let y4Offset2 = cy + halfH in
 let x4Offset2 = cx - halfW in
 let pts = [[cx, y4Offset], [x4Offset,
 let [color, strokeColor, strokeWidth]
 polygon color strokeColor strokeWid

rhombus = rhombusFunc [79, 89] 49 78

circle1 = circle 0 [126, 359] 43

rhombus1 = rhombusFunc [455, 345] 49 78

svg (concat [
 [rhombus],

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

9/19/2019 Sketch-n-Sketch

file:///Users/brian/Documents/phd/more-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_Appendix/sketch-n-sketch-uist-2019/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo Redo Clean Up

Current �le: Untitled *

Run

⦀

Context: Program

rhombusFunc

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x2, y2] as pt2 = [288, 176]

[x1, y1] as pt1 = [221, 198]

points = [pt1, pt2, pt3]

x1Offset = x + 102

rhombusFunc [cx, cy] halfW halfH =
 let y4Offset = cy - halfH in
 let x4Offset = cx + halfW in
 let y4Offset2 = cy + halfH in
 let x4Offset2 = cx - halfW in
 let pts = [[cx, y4Offset], [x4Offset,
 let [color, strokeColor, strokeWidth]
 polygon color strokeColor strokeWid

rhombus = rhombusFunc [79, 89] 49 78

circle1 = circle 0 [126, 359] 43

rhombus1 = rhombusFunc [455, 345] 49 78

svg (concat [
 [rhombus],

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

9/19/2019
Sketch-n-Sketch

file:///U
sers/brian/D

ocum
ents/phd/m

ore-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_A
ppendix/sketch-n-sketch-uist-2019/index.htm

l
1/1

Sketch-n-Sketch
F

ile
E

x
a

m
p

le
s

C
o

d
e

 T
o

o
ls

O
u

tp
u

t T
o

o
ls

V
ie

w
O

p
tio

n
s

 U
n

d
o

 R
e

d
o

C
le

a
n

 U
p

Current �le: Untitled *

R
u

n

⦀

Context: P
ro

g
ra

m

rhom
busFunc

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x2, y2] as pt2 = [288, 176]

[x1, y1] as pt1 = [221, 198]

points = [pt1, pt2, pt3]

x1Offset = x + 102

rhombusFunc [cx, cy] halfW halfH =
 let y4Offset = cy - halfH in
 let x4Offset = cx + halfW in
 let y4Offset2 = cy + halfH in
 let x4Offset2 = cx - halfW in
 let pts = [[cx, y4Offset], [x4Offset,
 let [color, strokeColor, strokeWidth]
 polygon color strokeColor strokeWid

rhombus = rhombusFunc [79, 89] 49 78

circle1 = circle 0 [126, 359] 43

rhombus1 = rhombusFunc [455, 345] 49 78

svg (concat [
 [rhombus],

89101112131415161718192021222324252627282930313233

Expression Focusing + Generic Refactorings

What kinds of programs can
be constructed entirely through

output manipulations?

 21

Big Q

Examples

 22

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

equiTriPt [x3, y3] [x2, y2] =
 [(x2 + x3 + sqrt 3! * (y2 - y3))/ 2!, (y2 + y3 - sqrt 3! * (x2 - x3)) / 2!]

oneThirdPt [x, y] [x3, y3] =
 [x / 1.5!+ x3 / 3!, y / 1.5! + y3 / 3!]

point = [39, 314]

point2 = [490, 301]

makeKochPts depth point point2 =
 let oneThirdPt2 = oneThirdPt point2 point in
 let oneThirdPt3 = oneThirdPt point point2 in
 let equiTriPt2 = equiTriPt oneThirdPt3 oneThirdPt2 in
 if depth < 2 then
 [point, oneThirdPt3, equiTriPt2, oneThirdPt2]
 else
 let makeKochPts2 = makeKochPts (depth - 1) point oneThirdPt3 in
 let makeKochPts3 = makeKochPts (depth - 1) oneThirdPt3 equiTriPt2 in
 let makeKochPts4 = makeKochPts (depth - 1) equiTriPt2 oneThirdPt2 in
 let makeKochPts5 = makeKochPts (depth - 1) oneThirdPt2 point2 in
 concat [makeKochPts2, makeKochPts3, makeKochPts4, makeKochPts5]

depth = 3{1-5}

topPts = makeKochPts depth point point2

botCorner = equiTriPt point2 point

rightPts = makeKochPts depth point2 botCorner

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

(i) Koch Snowflake

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

rhombusFunc [x, y] halfW halfH =
 let xOffset = x + halfW in
 let xOffset2 = x - halfW in
 let yOffset = y - halfH in
 let yOffset2 = y + halfH in
 let pts = [[x, yOffset], [xOffset, y], [x, yOffset2], [xOffset
 let [color, strokeColor, strokeWidth] = [118, 360, 2] in
 polygon color strokeColor strokeWidth pts

rhombusFunc2 ([x, y] as point) =
 let halfW = 40 in
 let halfH = 83 in
 rhombusFunc point halfW halfH

branchHalfW = 48

y1Offset = branchY - branchHalfW

y1Offset2 = branchY + branchHalfW

x1Offset = branchLeft + 405

branch =
 let pts = [[branchLeft, y1Offset], [x1Offset, branchY], [branc
 let [color, strokeColor, strokeWidth] = [29, 360, 2] in
 polygon color strokeColor strokeWidth pts

deadspace = 72

leafAttachmentStartX = branchLeft + deadspace

leafAttachmentEndX = x1Offset - deadspace

leafAttachmentPts = pointsBetweenSepBy [leafAttachmentStartX, br

leaves =
 map rhombusFunc2 leafAttachmentPts

svg (concat [
 [branch],
 leaves
])

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

(xii) Tree Branch

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

point = [236, 241]

circles =
 map (\i ->
 circle (if mod i 2! == 0! then 0 else 466) point (22 + i *
 (reverse (zeroTo 5{0-15}))

svg (concat [
 circles
])

1
2
3
4
5
6
7
8
9

10

(xiii) Target

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

point = [82, 136]

h = 239

w = 444

floorRect = rect 36 point w h

tableRect = rect 188 point (w / 3!) h

svg (concat [
 [floorRect],
 [tableRect]
])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(ii) Precision Floor Plan

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[, y] p [g (q (p

hangingTray topPoint hangDistance =
 let [x, y] as point = topPoint in
 let yOffset = y + hangDistance in
 let [x1, y1] as point1 = [x, yOffset] in
 let trayHalfW = 85 in
 let left = x1 - trayHalfW in
 let right = x1 + trayHalfW in
 let tray = ellipse 46 point1 trayHalfW 21 in
 let color = 434 in
 let strokeWidth = 5 in
 let wire2 = line color strokeWidth point [right, y1] in
 let wire1 = line color strokeWidth point [left, y1] in
 [tray, wire2, wire1]

baseCenter = [centerX, 477]

color = 214

pillar = line color 20 point2 baseCenter

base = ellipse color baseCenter 147 20

strokeWidth = 15

leftArm = line color strokeWidth point2 point

rightArm = line color strokeWidth point2 point3

hangDistance = 232

hangingTray1 = hangingTray point3 hangDistance

hangingTray2 = hangingTray point hangDistance

svg (concat [
 [pillar],
 [base],
 [leftArm],
 [rightArm],
 hangingTray1,
 hangingTray2
])

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

(iv) Balance Scale

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

fstOffset = x13 + baseW

[_, y13] = onLine2

sndOffset = y13 - cutW

[x14, y14] as point14 = [fstOffset, y13]

y14Offset = y14 - cutW

boxBack =

 let pts = [point10, [x10, y10Offset], [x12, y12Offset], point

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxRight =

 let pts = [point12, [x12, y12Offset], [x14, y14Offset], point

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxBot =

 let pts = [point10, point12, point14, onLine2] in

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxLeft =

 let pts = [point10, [x10, y10Offset], [x13, sndOffset], onLin

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxFront =

 let pts = [[x13, sndOffset], [x14, y14Offset], point14, onLin

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

svg (concat [

 [topDownTemplate],

 [boxBack],

 [boxRight],

 [boxBot],

 [boxLeft],

 [boxFront]

])

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

(v) Box Volume

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

squareByCenter2Func3 center2 =

 squareByCenter fill2 center2 (squareW / 2!)

squareByCenter2Func4 center2 =

 squareByCenter fill center2 (squareW / 2!)

boxyXFunc ([x, y] as point) squareW n =

 let xOffset = x + squareW in

 let xOffset2 = x - squareW in

 let [x1, y1] as point1 = [xOffset, y] in

 let y1Offset = y1 - squareW in

 let ySep =0! - squareW in

 let upRightPts = nPointsSepBy n [x1, y1Offset] squareW (ySep)

 let [x2, y2] as point2 = [xOffset2, y] in

 let y2Offset = y2 - squareW in

 let yOffset3 = y2 + squareW in

 let yOffset4 = y1 + squareW in

 let upLeftPts = nPointsSepBy n [x2, y2Offset] ySep ySep in

 let downRightPts = nPointsSepBy n [x1, yOffset4] squareW squar

 let downLeftPts = nPointsSepBy n [x2, yOffset3] ySep squareW i

 let squareByCenter1 = squareByCenter 408 point (squareW / 2!)

 let repeatedSquareByCenter2Func =

 map squareByCenter2Func upRightPts in

 let repeatedSquareByCenter2Func21 =

 map squareByCenter2Func2 downRightPts in

 let repeatedSquareByCenter2Func3 =

 map squareByCenter2Func3 upLeftPts in

 let repeatedSquareByCenter2Func4 =

 map squareByCenter2Func4 downLeftPts in

 let squareByCenterSingleton = [squareByCenter1] in

 concat [squareByCenterSingleton, repeatedSquareByCenter2Func4

boxyX = boxyXFunc point squareW n

boxyXFunc1 = boxyXFunc [341, 621] squareW 3{0-10}

boxyXFunc2 = boxyXFunc [513, 216] squareW 1{0-10}

svg (concat [

 boxyX,

 boxyXFunc1,

 boxyXFunc2

])

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 (vi) Xs

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[x, y] as point = [66, 148]

h4 = 141

w = 274

fill = 362

h = 73

batteryFunc ([x, y] as point) h4 w fill h =
 let body = rect fill point w h4 in
 let head = rect fill [x+ w, (h4 - h + 2! * y) / 2!] 40 h in
 [body, head]

battery = batteryFunc point h4 w fill h

svg (concat [
 battery
])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

(vii) Battery

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[left, top] as topLeft = [84, 147]

height = 345

stoneWidth = 85

width = 331

archFunc ([left, top] as topLeft) width height stoneWidth =

 let lintel = rect 124 topLeft width stoneWidth in

 let pillarTop = top + stoneWidth in

 let pillarHeight = height - stoneWidth in

 let leftPillar = rect 16 [left, pillarTop] stoneWidth pillarH

 let rightPillar = rect 220 [width - stoneWidth+ left, pillar

 [lintel, leftPillar, rightPillar]

arch = archFunc topLeft width height stoneWidth

svg (concat [

 arch

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

(iii) Mondrian Arch

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

w = 126

color = 366

strokeWidth = 8

line1Func ([x, y] as point) =

 let xOffset = x + w in

 line color strokeWidth point [xOffset, y]

left = 104

top = 119

rungs =

 map line1Func (nVerticalPointsSepBy 4{0-10} [left, top] 50)

bot = 346

leftLine = line color strokeWidth [left, top] [left, bot]

rightLine = line color strokeWidth [left+ w, top] [left+ w, bot

svg (concat [

 rungs,

 [leftLine],

 [rightLine]

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

(viii) Ladder

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[left, top] as topLeft = [84, 117]

w = 320

∂ = 23

lambdaFunc ([left, top] as topLeft) w ∂ leftColor botColor bigCo

 let bot = top + w in

 let [x1, bot] as botLeft = [left, bot] in

 let right2 = x1 + w in

 let right3 = left + w in

 let yOffset2 = top + ∂ in

 let xOffset2 = left + ∂ in

 let leftOffset = x1 + ∂ in

 let botOffset = bot - ∂ in

 let rightOffset = right2 - ∂ in

 let [right, bot] as botRight = [right2, bot] in

 let yOffset = bot - ∂ in

 let midpoint2 = midpoint topLeft botRight in

 let [x, _] = midpoint2 in

 let fstOffset = x - ∂ in

 let [_, y] = midpoint2 in

 let sndOffset = y + ∂ in

 let leftTri =

 let pts = [[left, yOffset2], [fstOffset, y], [x1, botOffset]

 let [color, strokeColor, strokeWidth] = [leftColor, 360, 2]

 polygon color strokeColor strokeWidth pts in

 let botTri =

 let pts = [[leftOffset, bot], [x, sndOffset], [rightOffset,

 let [color, strokeColor, strokeWidth] = [botColor, 360, 2] i

 polygon color strokeColor strokeWidth pts in

 let bigTri =

 let pts = [[xOffset2, top], [right3, top], [right, yOffset]]

 let [color, strokeColor, strokeWidth] = [bigColor, 360, 2] i

 polygon color strokeColor strokeWidth pts in

 [leftTri, botTri, bigTri]

lambda = lambdaFunc topLeft w ∂ 26 234 144

svg (concat [

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

(ix) Logo (via Three Tris)

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

boxes =
 map (\i ->
 rect 200 [50 + i * 76, 110] 55 195)
 (zeroTo 7{0-15})

svg (concat [
 boxes
])

1
2
3
4
5
6
7
8
9

(x) N Boxes (xi) Ferris Wheel

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

point = [307, 334]

r = 166

attachmentPts = nPointsOnCircle 7{0-10} 0.06280000000000001{-3.14

color = 434

spokeFunc point2 =

 line color 5 point point2

spokes =

 map spokeFunc attachmentPts

carFunc center2 =

 squareByCenter 48 center2 25

cars =

 map carFunc attachmentPts

capFunc point2 =

 circle 364 point2 9

caps =

 map capFunc attachmentPts

ring1 = ring color 7 point r

hub = circle 362 point 44

svg (concat [

 [hub],

 cars,

 spokes,

 [ring1],

 caps

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[x, y] as point = [118, 193]

woodHalfL = 98

taperStartX = x + woodHalfL

[x1, y1] as point1 = [taperStartX, y]

pencilHalfW = 45

top = y1 - pencilHalfW

bot = y1 + pencilHalfW

tipX = x1 + 183

body = rectByCenter 44 point woodHalfL pencilHalfW

ratio = 0.651569678605651

leadStartBotPt = onLine [x1, bot] [tipX, y1] ratio

leadStartTopPt = onLine [x1, top] [tipX, y1] ratio

shavedWood =

 let pts = [[x1, bot], [x1, top], leadStartTopPt, leadStartBotP

 let [color, strokeColor, strokeWidth] = [464, 360, 0] in

 polygon color strokeColor strokeWidth pts

lead =

 let pts = [leadStartBotPt, leadStartTopPt, [tipX, y1]] in

 let [color, strokeColor, strokeWidth] = [409, 360, 0] in

 polygon color strokeColor strokeWidth pts

svg (concat [

 [body],

 [shavedWood],

 [lead]

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

(xiv) Pencil Tip

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

pt2 = [351, 271]

pt1 = [122, 382]

arrowFunc pt1 pt2 =
 let onLine2 = onLine pt1 pt2 0.7754620659147587 in
 let onPerpendicularLine2 = onPerpendicularLine onLine2 pt2 1! i
 let onPerpendicularLine3 = onPerpendicularLine onLine2 pt2 -1!
 let line1 = line 0 5 pt1 pt2 in
 let line2 = line 0 5 onPerpendicularLine2 pt2 in
 let line3 = line 0 5 onPerpendicularLine3 pt2 in
 [line1, line2, line3]

arrow = arrowFunc pt1 pt2

arrowFunc1 = arrowFunc [295, 378] [432, 428]

arrowFunc2 = arrowFunc [324, 535] [245, 413]

svg (concat [
 arrow,
 arrowFunc1,
 arrowFunc2
])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(xv) Arrows

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[x1, y1]= [444, 358]

x= 56

halfGauge = 58

yOffset = y1 - halfGauge

yOffset2 = y1 + halfGauge

railOverExtension = 40

firstTieX = x + railOverExtension

y1Offset = y1 - halfGauge

y1Offset2 = y1 + halfGauge

endTiesX = x1 - railOverExtension

pointsBetweenSepBy2 = pointsBetweenSepBy [firstTieX, y1] [endTie

tieOverExtension = 32

rectByCenter1Func point2 =

 rectByCenter 24 point2 17.5 (halfGauge + tieOverExtension)

repeatedRectByCenter1Func =

 map rectByCenter1Func pointsBetweenSepBy2

color = 446

strokeWidth = 17

line1 = line color strokeWidth [x, yOffset] [x1, y1Offset]

line2 = line color strokeWidth [x, yOffset2] [x1, y1Offset2]

svg (concat [

 repeatedRectByCenter1Func,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

(xvi) Rails

WWID: PBD Benchmarks

 23

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

fstOffset = x13 + baseW

[_, y13] = onLine2

sndOffset = y13 - cutW

[x14, y14] as point14 = [fstOffset, y13]

y14Offset = y14 - cutW

boxBack =

 let pts = [point10, [x10, y10Offset], [x12, y12Offset], point

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxRight =

 let pts = [point12, [x12, y12Offset], [x14, y14Offset], point

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxBot =

 let pts = [point10, point12, point14, onLine2] in

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxLeft =

 let pts = [point10, [x10, y10Offset], [x13, sndOffset], onLin

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxFront =

 let pts = [[x13, sndOffset], [x14, y14Offset], point14, onLin

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

svg (concat [

 [topDownTemplate],

 [boxBack],

 [boxRight],

 [boxBot],

 [boxLeft],

 [boxFront]

])

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

(v) Box Volume

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

squareByCenter2Func3 center2 =

 squareByCenter fill2 center2 (squareW / 2!)

squareByCenter2Func4 center2 =

 squareByCenter fill center2 (squareW / 2!)

boxyXFunc ([x, y] as point) squareW n =

 let xOffset = x + squareW in

 let xOffset2 = x - squareW in

 let [x1, y1] as point1 = [xOffset, y] in

 let y1Offset = y1 - squareW in

 let ySep =0! - squareW in

 let upRightPts = nPointsSepBy n [x1, y1Offset] squareW (ySep)

 let [x2, y2] as point2 = [xOffset2, y] in

 let y2Offset = y2 - squareW in

 let yOffset3 = y2 + squareW in

 let yOffset4 = y1 + squareW in

 let upLeftPts = nPointsSepBy n [x2, y2Offset] ySep ySep in

 let downRightPts = nPointsSepBy n [x1, yOffset4] squareW squar

 let downLeftPts = nPointsSepBy n [x2, yOffset3] ySep squareW i

 let squareByCenter1 = squareByCenter 408 point (squareW / 2!)

 let repeatedSquareByCenter2Func =

 map squareByCenter2Func upRightPts in

 let repeatedSquareByCenter2Func21 =

 map squareByCenter2Func2 downRightPts in

 let repeatedSquareByCenter2Func3 =

 map squareByCenter2Func3 upLeftPts in

 let repeatedSquareByCenter2Func4 =

 map squareByCenter2Func4 downLeftPts in

 let squareByCenterSingleton = [squareByCenter1] in

 concat [squareByCenterSingleton, repeatedSquareByCenter2Func4

boxyX = boxyXFunc point squareW n

boxyXFunc1 = boxyXFunc [341, 621] squareW 3{0-10}

boxyXFunc2 = boxyXFunc [513, 216] squareW 1{0-10}

svg (concat [

 boxyX,

 boxyXFunc1,

 boxyXFunc2

])

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 (vi) Xs

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

equiTriPt [x3, y3] [x2, y2] =
 [(x2 + x3 + sqrt 3! * (y2 - y3))/ 2!, (y2 + y3 - sqrt 3! * (x2 - x3)) / 2!]

oneThirdPt [x, y] [x3, y3] =
 [x / 1.5!+ x3 / 3!, y / 1.5! + y3 / 3!]

point = [39, 314]

point2 = [490, 301]

makeKochPts depth point point2 =
 let oneThirdPt2 = oneThirdPt point2 point in
 let oneThirdPt3 = oneThirdPt point point2 in
 let equiTriPt2 = equiTriPt oneThirdPt3 oneThirdPt2 in
 if depth < 2 then
 [point, oneThirdPt3, equiTriPt2, oneThirdPt2]
 else
 let makeKochPts2 = makeKochPts (depth - 1) point oneThirdPt3 in
 let makeKochPts3 = makeKochPts (depth - 1) oneThirdPt3 equiTriPt2 in
 let makeKochPts4 = makeKochPts (depth - 1) equiTriPt2 oneThirdPt2 in
 let makeKochPts5 = makeKochPts (depth - 1) oneThirdPt2 point2 in
 concat [makeKochPts2, makeKochPts3, makeKochPts4, makeKochPts5]

depth = 3{1-5}

topPts = makeKochPts depth point point2

botCorner = equiTriPt point2 point

rightPts = makeKochPts depth point2 botCorner

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

(i) Koch Snowflake

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

point = [82, 136]

h = 239

w = 444

floorRect = rect 36 point w h

tableRect = rect 188 point (w / 3!) h

svg (concat [
 [floorRect],
 [tableRect]
])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(ii) Precision Floor Plan
Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[, y] p [g (q (p

hangingTray topPoint hangDistance =
 let [x, y] as point = topPoint in
 let yOffset = y + hangDistance in
 let [x1, y1] as point1 = [x, yOffset] in
 let trayHalfW = 85 in
 let left = x1 - trayHalfW in
 let right = x1 + trayHalfW in
 let tray = ellipse 46 point1 trayHalfW 21 in
 let color = 434 in
 let strokeWidth = 5 in
 let wire2 = line color strokeWidth point [right, y1] in
 let wire1 = line color strokeWidth point [left, y1] in
 [tray, wire2, wire1]

baseCenter = [centerX, 477]

color = 214

pillar = line color 20 point2 baseCenter

base = ellipse color baseCenter 147 20

strokeWidth = 15

leftArm = line color strokeWidth point2 point

rightArm = line color strokeWidth point2 point3

hangDistance = 232

hangingTray1 = hangingTray point3 hangDistance

hangingTray2 = hangingTray point hangDistance

svg (concat [
 [pillar],
 [base],
 [leftArm],
 [rightArm],
 hangingTray1,
 hangingTray2
])

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

(iv) Balance Scale

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[left, top] as topLeft = [84, 147]

height = 345

stoneWidth = 85

width = 331

archFunc ([left, top] as topLeft) width height stoneWidth =

 let lintel = rect 124 topLeft width stoneWidth in

 let pillarTop = top + stoneWidth in

 let pillarHeight = height - stoneWidth in

 let leftPillar = rect 16 [left, pillarTop] stoneWidth pillarH

 let rightPillar = rect 220 [width - stoneWidth+ left, pillar

 [lintel, leftPillar, rightPillar]

arch = archFunc topLeft width height stoneWidth

svg (concat [

 arch

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

(iii) Mondrian Arch

Watch What I Do:
Programming by Demonstration
Ed. Allen Cypher, 1993

Features needed for 9 remaining tasks:
• Text boxes
• list operations
• intersections of lines with edges
• overlapping & containment constraints
• multiple constraint solving
• arbitrary if-then-else branches

Future Work

 24

Widget 
Visibility

Soooo many!

Contextual
visibility only
helps a little.

Change
Explanation

Multiple results.
Necessary, but ☹

Better change
descriptions?

ODP for 
Novcies

ODP is
tantalizing.

But we haven’t
shown it’s easy.

search online for “sketch n sketch”
 25

DM on More Than Output!
Intermediate Value Widgets
Expression Focusing

Generic Tools, Too!
Generic Refactorings 
(via generic tracing)

OffsetsPoints

Lists

9/19/2019 Sketch-n-Sketch

file:///Users/brian/Documents/phd/more-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_Appendix/sketch-n-sketch-uist-2019/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo Redo Clean Up

Current �le: Untitled *

Run

⦀

Context: Program

points

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x, y] as point = [79, 89]

[x3, y3] as point3 = [272, 201]

[x2, y2] as point2 = [288, 176]

[x1, y1] as point1 = [221, 198]

points = [point1, point2, point3]

x1Offset = x + 102

svg (concat [

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Calls

9/19/2019 Sketch-n-Sketch

file:///Users/brian/Documents/phd/more-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_Appendix/sketch-n-sketch-uist-2019/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo Redo Clean Up

Current �le: Untitled *

Run

⦀

Context: Program

rhombusFunc

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x2, y2] as pt2 = [288, 176]

[x1, y1] as pt1 = [221, 198]

points = [pt1, pt2, pt3]

x1Offset = x + 102

rhombusFunc [cx, cy] halfW halfH =
 let y4Offset = cy - halfH in
 let x4Offset = cx + halfW in
 let y4Offset2 = cy + halfH in
 let x4Offset2 = cx - halfW in
 let pts = [[cx, y4Offset], [x4Offset,
 let [color, strokeColor, strokeWidth]
 polygon color strokeColor strokeWid

rhombus = rhombusFunc [79, 89] 49 78

circle1 = circle 0 [126, 359] 43

rhombus1 = rhombusFunc [455, 345] 49 78

svg (concat [
 [rhombus],

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

9/19/2019 Sketch-n-Sketch

file:///Users/brian/Documents/phd/more-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_Appendix/sketch-n-sketch-uist-2019/index.html 1/1

Sketch-n-Sketch File Examples Code Tools Output Tools View Options

 Undo Redo Clean Up

Current �le: Untitled *

Run

⦀

Context: Program

rhombusFunc

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x2, y2] as pt2 = [288, 176]

[x1, y1] as pt1 = [221, 198]

points = [pt1, pt2, pt3]

x1Offset = x + 102

rhombusFunc [cx, cy] halfW halfH =
 let y4Offset = cy - halfH in
 let x4Offset = cx + halfW in
 let y4Offset2 = cy + halfH in
 let x4Offset2 = cx - halfW in
 let pts = [[cx, y4Offset], [x4Offset,
 let [color, strokeColor, strokeWidth]
 polygon color strokeColor strokeWid

rhombus = rhombusFunc [79, 89] 49 78

circle1 = circle 0 [126, 359] 43

rhombus1 = rhombusFunc [455, 345] 49 78

svg (concat [
 [rhombus],

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

9/19/2019
Sketch-n-Sketch

file:///U
sers/brian/D

ocum
ents/phd/m

ore-prodirect-papers/uist-2019-koch/Sketch-n-Sketch_and_A
ppendix/sketch-n-sketch-uist-2019/index.htm

l
1/1

Sketch-n-Sketch
F

ile
E

x
a

m
p

le
s

C
o

d
e

 T
o

o
ls

O
u

tp
u

t T
o

o
ls

V
ie

w
O

p
tio

n
s

 U
n

d
o

 R
e

d
o

C
le

a
n

 U
p

Current �le: Untitled *

R
u

n

⦀

Context: P
ro

g
ra

m

rhom
busFunc

102

Built-In Tools

User-De�ned Tools

Standard Library Tools

[x2, y2] as pt2 = [288, 176]

[x1, y1] as pt1 = [221, 198]

points = [pt1, pt2, pt3]

x1Offset = x + 102

rhombusFunc [cx, cy] halfW halfH =
 let y4Offset = cy - halfH in
 let x4Offset = cx + halfW in
 let y4Offset2 = cy + halfH in
 let x4Offset2 = cx - halfW in
 let pts = [[cx, y4Offset], [x4Offset,
 let [color, strokeColor, strokeWidth]
 polygon color strokeColor strokeWid

rhombus = rhombusFunc [79, 89] 49 78

circle1 = circle 0 [126, 359] 43

rhombus1 = rhombusFunc [455, 345] 49 78

svg (concat [
 [rhombus],

89101112131415161718192021222324252627282930313233

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

equiTriPt [x3, y3] [x2, y2] =
 [(x2 + x3 + sqrt 3! * (y2 - y3))/ 2!, (y2 + y3 - sqrt 3! * (x2 - x3)) / 2!]

oneThirdPt [x, y] [x3, y3] =
 [x / 1.5!+ x3 / 3!, y / 1.5! + y3 / 3!]

point = [39, 314]

point2 = [490, 301]

makeKochPts depth point point2 =
 let oneThirdPt2 = oneThirdPt point2 point in
 let oneThirdPt3 = oneThirdPt point point2 in
 let equiTriPt2 = equiTriPt oneThirdPt3 oneThirdPt2 in
 if depth < 2 then
 [point, oneThirdPt3, equiTriPt2, oneThirdPt2]
 else
 let makeKochPts2 = makeKochPts (depth - 1) point oneThirdPt3 in
 let makeKochPts3 = makeKochPts (depth - 1) oneThirdPt3 equiTriPt2 in
 let makeKochPts4 = makeKochPts (depth - 1) equiTriPt2 oneThirdPt2 in
 let makeKochPts5 = makeKochPts (depth - 1) oneThirdPt2 point2 in
 concat [makeKochPts2, makeKochPts3, makeKochPts4, makeKochPts5]

depth = 3{1-5}

topPts = makeKochPts depth point point2

botCorner = equiTriPt point2 point

rightPts = makeKochPts depth point2 botCorner

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

rhombusFunc [x, y] halfW halfH =
 let xOffset = x + halfW in
 let xOffset2 = x - halfW in
 let yOffset = y - halfH in
 let yOffset2 = y + halfH in
 let pts = [[x, yOffset], [xOffset, y], [x, yOffset2], [xOffset
 let [color, strokeColor, strokeWidth] = [118, 360, 2] in
 polygon color strokeColor strokeWidth pts

rhombusFunc2 ([x, y] as point) =
 let halfW = 40 in
 let halfH = 83 in
 rhombusFunc point halfW halfH

branchHalfW = 48

y1Offset = branchY - branchHalfW

y1Offset2 = branchY + branchHalfW

x1Offset = branchLeft + 405

branch =
 let pts = [[branchLeft, y1Offset], [x1Offset, branchY], [branc
 let [color, strokeColor, strokeWidth] = [29, 360, 2] in
 polygon color strokeColor strokeWidth pts

deadspace = 72

leafAttachmentStartX = branchLeft + deadspace

leafAttachmentEndX = x1Offset - deadspace

leafAttachmentPts = pointsBetweenSepBy [leafAttachmentStartX, br

leaves =
 map rhombusFunc2 leafAttachmentPts

svg (concat [
 [branch],
 leaves
])

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

point = [236, 241]

circles =
 map (\i ->
 circle (if mod i 2! == 0! then 0 else 466) point (22 + i *
 (reverse (zeroTo 5{0-15}))

svg (concat [
 circles
])

1
2
3
4
5
6
7
8
9

10

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

point = [82, 136]

h = 239

w = 444

floorRect = rect 36 point w h

tableRect = rect 188 point (w / 3!) h

svg (concat [
 [floorRect],
 [tableRect]
])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[, y] p [g (q (p

hangingTray topPoint hangDistance =
 let [x, y] as point = topPoint in
 let yOffset = y + hangDistance in
 let [x1, y1] as point1 = [x, yOffset] in
 let trayHalfW = 85 in
 let left = x1 - trayHalfW in
 let right = x1 + trayHalfW in
 let tray = ellipse 46 point1 trayHalfW 21 in
 let color = 434 in
 let strokeWidth = 5 in
 let wire2 = line color strokeWidth point [right, y1] in
 let wire1 = line color strokeWidth point [left, y1] in
 [tray, wire2, wire1]

baseCenter = [centerX, 477]

color = 214

pillar = line color 20 point2 baseCenter

base = ellipse color baseCenter 147 20

strokeWidth = 15

leftArm = line color strokeWidth point2 point

rightArm = line color strokeWidth point2 point3

hangDistance = 232

hangingTray1 = hangingTray point3 hangDistance

hangingTray2 = hangingTray point hangDistance

svg (concat [
 [pillar],
 [base],
 [leftArm],
 [rightArm],
 hangingTray1,
 hangingTray2
])

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

fstOffset = x13 + baseW

[_, y13] = onLine2

sndOffset = y13 - cutW

[x14, y14] as point14 = [fstOffset, y13]

y14Offset = y14 - cutW

boxBack =

 let pts = [point10, [x10, y10Offset], [x12, y12Offset], point

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxRight =

 let pts = [point12, [x12, y12Offset], [x14, y14Offset], point

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxBot =

 let pts = [point10, point12, point14, onLine2] in

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxLeft =

 let pts = [point10, [x10, y10Offset], [x13, sndOffset], onLin

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

boxFront =

 let pts = [[x13, sndOffset], [x14, y14Offset], point14, onLin

 let [color, strokeColor, strokeWidth] = [color, 360, 2] in

 polygon color strokeColor strokeWidth pts

svg (concat [

 [topDownTemplate],

 [boxBack],

 [boxRight],

 [boxBot],

 [boxLeft],

 [boxFront]

])

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

squareByCenter2Func3 center2 =

 squareByCenter fill2 center2 (squareW / 2!)

squareByCenter2Func4 center2 =

 squareByCenter fill center2 (squareW / 2!)

boxyXFunc ([x, y] as point) squareW n =

 let xOffset = x + squareW in

 let xOffset2 = x - squareW in

 let [x1, y1] as point1 = [xOffset, y] in

 let y1Offset = y1 - squareW in

 let ySep =0! - squareW in

 let upRightPts = nPointsSepBy n [x1, y1Offset] squareW (ySep)

 let [x2, y2] as point2 = [xOffset2, y] in

 let y2Offset = y2 - squareW in

 let yOffset3 = y2 + squareW in

 let yOffset4 = y1 + squareW in

 let upLeftPts = nPointsSepBy n [x2, y2Offset] ySep ySep in

 let downRightPts = nPointsSepBy n [x1, yOffset4] squareW squar

 let downLeftPts = nPointsSepBy n [x2, yOffset3] ySep squareW i

 let squareByCenter1 = squareByCenter 408 point (squareW / 2!)

 let repeatedSquareByCenter2Func =

 map squareByCenter2Func upRightPts in

 let repeatedSquareByCenter2Func21 =

 map squareByCenter2Func2 downRightPts in

 let repeatedSquareByCenter2Func3 =

 map squareByCenter2Func3 upLeftPts in

 let repeatedSquareByCenter2Func4 =

 map squareByCenter2Func4 downLeftPts in

 let squareByCenterSingleton = [squareByCenter1] in

 concat [squareByCenterSingleton, repeatedSquareByCenter2Func4

boxyX = boxyXFunc point squareW n

boxyXFunc1 = boxyXFunc [341, 621] squareW 3{0-10}

boxyXFunc2 = boxyXFunc [513, 216] squareW 1{0-10}

svg (concat [

 boxyX,

 boxyXFunc1,

 boxyXFunc2

])

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[x, y] as point = [66, 148]

h4 = 141

w = 274

fill = 362

h = 73

batteryFunc ([x, y] as point) h4 w fill h =
 let body = rect fill point w h4 in
 let head = rect fill [x+ w, (h4 - h + 2! * y) / 2!] 40 h in
 [body, head]

battery = batteryFunc point h4 w fill h

svg (concat [
 battery
])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[left, top] as topLeft = [84, 147]

height = 345

stoneWidth = 85

width = 331

archFunc ([left, top] as topLeft) width height stoneWidth =

 let lintel = rect 124 topLeft width stoneWidth in

 let pillarTop = top + stoneWidth in

 let pillarHeight = height - stoneWidth in

 let leftPillar = rect 16 [left, pillarTop] stoneWidth pillarH

 let rightPillar = rect 220 [width - stoneWidth+ left, pillar

 [lintel, leftPillar, rightPillar]

arch = archFunc topLeft width height stoneWidth

svg (concat [

 arch

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

w = 126

color = 366

strokeWidth = 8

line1Func ([x, y] as point) =

 let xOffset = x + w in

 line color strokeWidth point [xOffset, y]

left = 104

top = 119

rungs =

 map line1Func (nVerticalPointsSepBy 4{0-10} [left, top] 50)

bot = 346

leftLine = line color strokeWidth [left, top] [left, bot]

rightLine = line color strokeWidth [left+ w, top] [left+ w, bot

svg (concat [

 rungs,

 [leftLine],

 [rightLine]

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[left, top] as topLeft = [84, 117]

w = 320

∂ = 23

lambdaFunc ([left, top] as topLeft) w ∂ leftColor botColor bigCo

 let bot = top + w in

 let [x1, bot] as botLeft = [left, bot] in

 let right2 = x1 + w in

 let right3 = left + w in

 let yOffset2 = top + ∂ in

 let xOffset2 = left + ∂ in

 let leftOffset = x1 + ∂ in

 let botOffset = bot - ∂ in

 let rightOffset = right2 - ∂ in

 let [right, bot] as botRight = [right2, bot] in

 let yOffset = bot - ∂ in

 let midpoint2 = midpoint topLeft botRight in

 let [x, _] = midpoint2 in

 let fstOffset = x - ∂ in

 let [_, y] = midpoint2 in

 let sndOffset = y + ∂ in

 let leftTri =

 let pts = [[left, yOffset2], [fstOffset, y], [x1, botOffset]

 let [color, strokeColor, strokeWidth] = [leftColor, 360, 2]

 polygon color strokeColor strokeWidth pts in

 let botTri =

 let pts = [[leftOffset, bot], [x, sndOffset], [rightOffset,

 let [color, strokeColor, strokeWidth] = [botColor, 360, 2] i

 polygon color strokeColor strokeWidth pts in

 let bigTri =

 let pts = [[xOffset2, top], [right3, top], [right, yOffset]]

 let [color, strokeColor, strokeWidth] = [bigColor, 360, 2] i

 polygon color strokeColor strokeWidth pts in

 [leftTri, botTri, bigTri]

lambda = lambdaFunc topLeft w ∂ 26 234 144

svg (concat [

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

boxes =
 map (\i ->
 rect 200 [50 + i * 76, 110] 55 195)
 (zeroTo 7{0-15})

svg (concat [
 boxes
])

1
2
3
4
5
6
7
8
9

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

point = [307, 334]

r = 166

attachmentPts = nPointsOnCircle 7{0-10} 0.06280000000000001{-3.14

color = 434

spokeFunc point2 =

 line color 5 point point2

spokes =

 map spokeFunc attachmentPts

carFunc center2 =

 squareByCenter 48 center2 25

cars =

 map carFunc attachmentPts

capFunc point2 =

 circle 364 point2 9

caps =

 map capFunc attachmentPts

ring1 = ring color 7 point r

hub = circle 362 point 44

svg (concat [

 [hub],

 cars,

 spokes,

 [ring1],

 caps

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[x, y] as point = [118, 193]

woodHalfL = 98

taperStartX = x + woodHalfL

[x1, y1] as point1 = [taperStartX, y]

pencilHalfW = 45

top = y1 - pencilHalfW

bot = y1 + pencilHalfW

tipX = x1 + 183

body = rectByCenter 44 point woodHalfL pencilHalfW

ratio = 0.651569678605651

leadStartBotPt = onLine [x1, bot] [tipX, y1] ratio

leadStartTopPt = onLine [x1, top] [tipX, y1] ratio

shavedWood =

 let pts = [[x1, bot], [x1, top], leadStartTopPt, leadStartBotP

 let [color, strokeColor, strokeWidth] = [464, 360, 0] in

 polygon color strokeColor strokeWidth pts

lead =

 let pts = [leadStartBotPt, leadStartTopPt, [tipX, y1]] in

 let [color, strokeColor, strokeWidth] = [409, 360, 0] in

 polygon color strokeColor strokeWidth pts

svg (concat [

 [body],

 [shavedWood],

 [lead]

])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

pt2 = [351, 271]

pt1 = [122, 382]

arrowFunc pt1 pt2 =
 let onLine2 = onLine pt1 pt2 0.7754620659147587 in
 let onPerpendicularLine2 = onPerpendicularLine onLine2 pt2 1! i
 let onPerpendicularLine3 = onPerpendicularLine onLine2 pt2 -1!
 let line1 = line 0 5 pt1 pt2 in
 let line2 = line 0 5 onPerpendicularLine2 pt2 in
 let line3 = line 0 5 onPerpendicularLine3 pt2 in
 [line1, line2, line3]

arrow = arrowFunc pt1 pt2

arrowFunc1 = arrowFunc [295, 378] [432, 428]

arrowFunc2 = arrowFunc [324, 535] [245, 413]

svg (concat [
 arrow,
 arrowFunc1,
 arrowFunc2
])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Sketch-n-Sketch File Code Tools View Options Output Tools

 Undo Redo Clean Up

Current �le: Untitled *

Run �

⦀

Context: Program

[x1, y1]= [444, 358]

x= 56

halfGauge = 58

yOffset = y1 - halfGauge

yOffset2 = y1 + halfGauge

railOverExtension = 40

firstTieX = x + railOverExtension

y1Offset = y1 - halfGauge

y1Offset2 = y1 + halfGauge

endTiesX = x1 - railOverExtension

pointsBetweenSepBy2 = pointsBetweenSepBy [firstTieX, y1] [endTie

tieOverExtension = 32

rectByCenter1Func point2 =

 rectByCenter 24 point2 17.5 (halfGauge + tieOverExtension)

repeatedRectByCenter1Func =

 map rectByCenter1Func pointsBetweenSepBy2

color = 446

strokeWidth = 17

line1 = line color strokeWidth [x, yOffset] [x1, y1Offset]

line2 = line color strokeWidth [x, yOffset2] [x1, y1Offset2]

svg (concat [

 repeatedRectByCenter1Func,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Thank you!

Thank you!

 28

Related Work: Non-standard Programs

 30

Drawing with Constraints

Parametric CAD

Programming by Demo (PBD)

Constraint-Oriented Programming

Bret Victor (2012)
Drawing Dynamic VisualizationsToby Schachman (2012)

Recursive DrawingToby Schachman
Apparatus

Lieberman (1993)
Tinker

program
with loops

Helena

Figure 3. The Rousillon workflow. A user provides a single input demonstration, recording how to collect the first row of the target dataset. For instance,
to collect the dataset depicted in Fig. 1, the user navigates to a URL that loads a list of movies, collects the first movie’s title, clicks the first movie’s
title to load the movie’s details page, collects the name of the first actor in the first movie, then ends the recording. A Recorder converts the user’s
demonstration into a program that replays the demonstrated interaction; it collects the first row. This replay program is the input to our PBD tool,
Rousillon. Our Relation Selector uses the interacted elements (e.g., movie name, actor name) to identify relations on the target webpages; here, it finds
a relation of movies on page one and actors on page two. The input replay program uses the Ringer [4] language, which is low-level and unreadable, so
our Reverse Compiler translates from Ringer to the readable, high-level Helena web language. Finally, our Generalizer uses the selected relations (e.g.,
movies, actors) and the straight-line Helena program to write a Helena program that collects not only the first row of the data but all rows of the data.

to meeting the needs identified in our formative study. The
key differences between Vegemite and Rousillon are that Veg-
emite:
(i) cannot add nested loops. See the introduction for a dis-
cussion of why it cannot add them, why adding them is a key
technical challenge, why they are critical to scraping hierar-
chical data, and why hierarchical data is desirable.
(ii) uses a divided interaction model, requiring one demon-
stration for data extraction (relation finding) and a separate
demonstration for data access (navigation). Users reported
“it was confusing to use one technique to create the initial
table, and another technique to add information to a new col-
umn” [32]; early versions of Rousillon used a divided inter-
action model and received similar feedback. Thus, Rousillon
accepts a single demonstration as input and extracts both data
extraction and data access information from this one input.
(iii) uses a less robust replayer, CoScripter, which was de-
signed for an earlier, less interactive web. CoScripter’s high-
level language makes its programs readable but fragile in the
face of page redesigns and AJAX-heavy interactive pages.
On a suite of modern replay benchmarks, Ringer (the re-
player Rousillon uses) replays 4x more interactions than Co-
Scripter [4]. To use Vegemite on today’s web, we would need
to reimplement it with a modern replayer that uses low-level
statements for robustness; thus, to recover readability, Veg-
emite would need a reverse compiler like Rousillon’s.
(iv) can replace uses of typed strings only. E.g., Vegemite
can turn a script that types “movie 1” in node into a script that
types “movie 2” in node. In contrast, Rousillon can replace
uses of typed strings, URLs, and DOM nodes (e.g., click on
node2 instead of node1). The browser implementation de-
tails that make DOM node replacement more challenging than
string replacement are out of scope of this paper, so although
this substantially affects the possible applications of Vegemite,
this paper does not emphasize this last distinction.

Another PBD data access approach uses site-provided APIs
rather than webpage extraction [6]. This is a good approach
if APIs offer the target data. However, this is rare in practice;
none of the 10 datasets described in our formative study are
available via API. (Only one dataset used a site that offers an
API, and that site limits the amount of API-retrievable data to
less than the team wanted and less than its webpages offer).
Web Automation Languages
There are many Domain Specific Languages (DSLs) for scrap-
ing, most implemented as libraries for general-purpose lan-

guages: Selenium [49] for C#, Groovy, Java, Perl, PHP,
Python, Ruby, and Scala; Beautiful Soup [46] and Scrapy
[48] for Python; Nokogiri [38] and Hpricot [16] for Ruby;
HXT [15] for Haskell. Some drive a browser instance and em-
phasize human-like actions like clicks and keypresses; others
emphasize methods for parsing downloaded DOM trees, offer
no mechanisms for human-like interaction, and thus require
users to reverse engineer any relevant AJAX interactions (e.g.,
BeautifulSoup, Scrapy). To use any of these DSLs, program-
mers must understand DOM trees and how to traverse them –
e.g., XPath or CSS selectors – and other browser internals.

Partial PBD
While the traditional web automation DSLs described above
do not use PBD, a class of GUI-wrapped DSLs do mix PBD
with traditional programming. Mozenda [35] and Parse-
Hub [43] are the best known in this class, but it also in-
cludes tools like Portia [47], Octoparse [40], and Kantu [1].
With these hybrid tools, users builds a program statement-
by-statement, as in traditional programming, but they add
statements via GUI menus and buttons, rather than with a text
editor or mainstream structure editor. The user selects the
necessary control flow constructs and other statements at each
program point, as in traditional programming. However, users
write node extraction code via PBD. When they reach a point
in the program at which they want to use a node or table of
nodes, they use the GUI to indicate that they will click on
examples, and the tool writes a function for finding the rele-
vant node or nodes. This class of tools occupies an unusual
space because users need to reason about the structure of the
program, the statements they will use – essentially they need
to do traditional programming – but because these tools’ GUIs
support such small languages of actions, they do not offer the
highly flexible programming models of traditional DSLs.

Rousillon Building Blocks
Rousillon makes use of two key prior works, Ringer [4] and
Helena [7, 9]. Ringer is a web replayer. The input is a user
interaction with the Chrome browser, and the output is a loop-
free program in the Ringer programming language that auto-
mates the same interaction. Rousillon uses Ringer to record
user demonstrations; the Ringer output program is the input
to the Rousillon synthesizer. Helena is a high-level web au-
tomation language. With statements like load, click, and
type, it emphasizes human-like interaction with webpages.
Rousillon expresses its output programs in Helena.

4

Chasins et al. (2018)
Rousillon

user demonstration

low-level
program

Ringer

Figure 3. The Rousillon workflow. A user provides a single input demonstration, recording how to collect the first row of the target dataset. For instance,
to collect the dataset depicted in Fig. 1, the user navigates to a URL that loads a list of movies, collects the first movie’s title, clicks the first movie’s
title to load the movie’s details page, collects the name of the first actor in the first movie, then ends the recording. A Recorder converts the user’s
demonstration into a program that replays the demonstrated interaction; it collects the first row. This replay program is the input to our PBD tool,
Rousillon. Our Relation Selector uses the interacted elements (e.g., movie name, actor name) to identify relations on the target webpages; here, it finds
a relation of movies on page one and actors on page two. The input replay program uses the Ringer [4] language, which is low-level and unreadable, so
our Reverse Compiler translates from Ringer to the readable, high-level Helena web language. Finally, our Generalizer uses the selected relations (e.g.,
movies, actors) and the straight-line Helena program to write a Helena program that collects not only the first row of the data but all rows of the data.

to meeting the needs identified in our formative study. The
key differences between Vegemite and Rousillon are that Veg-
emite:
(i) cannot add nested loops. See the introduction for a dis-
cussion of why it cannot add them, why adding them is a key
technical challenge, why they are critical to scraping hierar-
chical data, and why hierarchical data is desirable.
(ii) uses a divided interaction model, requiring one demon-
stration for data extraction (relation finding) and a separate
demonstration for data access (navigation). Users reported
“it was confusing to use one technique to create the initial
table, and another technique to add information to a new col-
umn” [32]; early versions of Rousillon used a divided inter-
action model and received similar feedback. Thus, Rousillon
accepts a single demonstration as input and extracts both data
extraction and data access information from this one input.
(iii) uses a less robust replayer, CoScripter, which was de-
signed for an earlier, less interactive web. CoScripter’s high-
level language makes its programs readable but fragile in the
face of page redesigns and AJAX-heavy interactive pages.
On a suite of modern replay benchmarks, Ringer (the re-
player Rousillon uses) replays 4x more interactions than Co-
Scripter [4]. To use Vegemite on today’s web, we would need
to reimplement it with a modern replayer that uses low-level
statements for robustness; thus, to recover readability, Veg-
emite would need a reverse compiler like Rousillon’s.
(iv) can replace uses of typed strings only. E.g., Vegemite
can turn a script that types “movie 1” in node into a script that
types “movie 2” in node. In contrast, Rousillon can replace
uses of typed strings, URLs, and DOM nodes (e.g., click on
node2 instead of node1). The browser implementation de-
tails that make DOM node replacement more challenging than
string replacement are out of scope of this paper, so although
this substantially affects the possible applications of Vegemite,
this paper does not emphasize this last distinction.

Another PBD data access approach uses site-provided APIs
rather than webpage extraction [6]. This is a good approach
if APIs offer the target data. However, this is rare in practice;
none of the 10 datasets described in our formative study are
available via API. (Only one dataset used a site that offers an
API, and that site limits the amount of API-retrievable data to
less than the team wanted and less than its webpages offer).
Web Automation Languages
There are many Domain Specific Languages (DSLs) for scrap-
ing, most implemented as libraries for general-purpose lan-

guages: Selenium [49] for C#, Groovy, Java, Perl, PHP,
Python, Ruby, and Scala; Beautiful Soup [46] and Scrapy
[48] for Python; Nokogiri [38] and Hpricot [16] for Ruby;
HXT [15] for Haskell. Some drive a browser instance and em-
phasize human-like actions like clicks and keypresses; others
emphasize methods for parsing downloaded DOM trees, offer
no mechanisms for human-like interaction, and thus require
users to reverse engineer any relevant AJAX interactions (e.g.,
BeautifulSoup, Scrapy). To use any of these DSLs, program-
mers must understand DOM trees and how to traverse them –
e.g., XPath or CSS selectors – and other browser internals.

Partial PBD
While the traditional web automation DSLs described above
do not use PBD, a class of GUI-wrapped DSLs do mix PBD
with traditional programming. Mozenda [35] and Parse-
Hub [43] are the best known in this class, but it also in-
cludes tools like Portia [47], Octoparse [40], and Kantu [1].
With these hybrid tools, users builds a program statement-
by-statement, as in traditional programming, but they add
statements via GUI menus and buttons, rather than with a text
editor or mainstream structure editor. The user selects the
necessary control flow constructs and other statements at each
program point, as in traditional programming. However, users
write node extraction code via PBD. When they reach a point
in the program at which they want to use a node or table of
nodes, they use the GUI to indicate that they will click on
examples, and the tool writes a function for finding the rele-
vant node or nodes. This class of tools occupies an unusual
space because users need to reason about the structure of the
program, the statements they will use – essentially they need
to do traditional programming – but because these tools’ GUIs
support such small languages of actions, they do not offer the
highly flexible programming models of traditional DSLs.

Rousillon Building Blocks
Rousillon makes use of two key prior works, Ringer [4] and
Helena [7, 9]. Ringer is a web replayer. The input is a user
interaction with the Chrome browser, and the output is a loop-
free program in the Ringer programming language that auto-
mates the same interaction. Rousillon uses Ringer to record
user demonstrations; the Ringer output program is the input
to the Rousillon synthesizer. Helena is a high-level web au-
tomation language. With statements like load, click, and
type, it emphasizes human-like interaction with webpages.
Rousillon expresses its output programs in Helena.

4

ROUSILLON

a recurrence-based relation that is consistent for the whole iteration. Using
the display calculators (Fig. 7.7[e]), the user can access every object from
the iteration and the embedding context. In our case, he or she must acti-
vate the logical calculator (“calcul” command), and demonstrate the ex-
pression: the radius (“rayon” command) of the last circle (the user points
the circle) is lower (“<“ command) than the minimum (click on the menu
item that denotes the minimum, “Min”). Clicking on the “=“ box fires the
calculus and implicitly asks EBP to handle the execution of the loop (the it-
eration definition is complete).

154 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 154

S

R

L

Figure 7.7

CERCLE

CERCLE

CALCUL

RAYON

CERCLE

CALCUL

RAYON

CALCUL

RAYON

<

RAYON RAYON RAYON

RAYON

MIN MIN MIN

MIN

7

4

1

/

8

5

2

0

9

6

3
=

(a)

(d)

(b)

(e)

(c)

(f)

?

7

4

1

/

8

5

2

0

9

6

3
=

7

4

1

/

8

5

2

0

9

6

3
=

Interactive definition of a loop.

V:\002564\002564.VP
Monday, December 18, 2000 2:01:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Pierra et al.(1996)
EBP

Sutherland (1963)
Sketchpad

~,~

i
~.,. ;Z- ~ I

/~7:~ --7
/ ~"

I
/

/ll
1/

\
f,,!

• ..:/

i I
",,,.,

/
";~.

"N
,/,

".,
/

~J

,%

io ~
I

/

,
....... i~I /

~
jl

',,2

'
I

i
.,

i

...f

.... 11//

"-d aa

o

Borning (1981)
ThingLab

Figure 5. A screen snapshot of the Juno-
2 user interface. Visible are: the palette of
built-in tools; the palette for the predefined
PSmodule; themenu of predefinedmodules;
the graphical view; and the program view.

module. The system simultaneously added variable declarations and draw-
ing commands to the program view.

Here is a synopsis of thePSmodule, which provides the PostScript-like
drawing operations used by Juno-2:

PS.MoveTo(p) starts a path at the point p,

PS.LineTo(q) extends the current path with a straight segment
to the point q,

PS.CurveTo(p,q,r) extends the current path with a curved
Bézier segment to r, using p and q as control points (see Figure 6),

PS.Fill() fills the current path with the current color, and

PS.Stroke() strokes the current path with the current color in the
current width and style.

The PS module also provides operations for controlling the current
color, controlling the width and style of strokes, and for painting and
measuring text, but we won’t describe them in this report.

Constraining. The second step of the standard procedure is to add con-
straints. In the case of the triangle, adding two predefinedCONG constraints
makes it equilateral; the program view changes simultaneously to include
the constraints as well as the drawing commands, as shown in the right of
Figure 5.

a

a

a

b

d

c

c

d

b

b

c

d

Figure 6. Three Bézier curves controlled by
a, b, c, and d.

CONG is one of several predefined geometric constraints:

p HOR q constrains points p and q to be aligned horizontally,

4

Heydon&Nelson (1981)
Juno-2

Research Roadmap

 31

General
Programming

Drawings
Data.Viz

Documents

This
Work

DRAW SHAPE

 33

1. Inserts function call, assigns it to a variable.

2. Attempts to add newVar and [newVar] to
the list literals in the program.

3. Succeeds when number of shapes in the
output increases by the expected amount.

MAKE EQUAL

 34

1. Use numeric traces (Chugh et al. PLDI '16) to set up an equation: 
114lineX1 = 245rectCX - 80rectHalfW

2. Choose a constant to solve for & remove. Solve. (External solver: REDUCE).  
114lineX1 ~~> 245cxRect - 80halfWRect  
80halfWRect ~~> 245cxRect - 114lineX1  
245cxRect ~~> 114lineX1 + 80halfWRect

3. If a needed constant is not bound to a variable, insert a new let binding at a
scope visible to its usages.

4. Ranking heuristic:

1. Smallest AST (often all the same size).

2. Shortest distance between constants removed (measured in lines).

3. Prefer removing constants later in the program (less like to cause a
dependency inversion).

Numeric Traces(Chugh et al. PLDI '16)

 35

let a = 3 in
let b = 5 in

a + b
⇓
8

Numeric Traces(Chugh et al. PLDI '16)

 36

let a = 3a in
let b = 5 in

a + b
⇓
8

Numeric Traces(Chugh et al. PLDI '16)

 37

let a = 3a in
let b = 5b in

a + b
⇓
8

Numeric Traces(Chugh et al. PLDI '16)

 38

let a = 3a in
let b = 5b in

a + b
⇓
8a+b

MAKE EQUAL

 39

1. Use numeric traces (Chugh et al. PLDI '16) to set up an equation: 
114lineX1 = 245rectCX - 80rectHalfW

2. Choose a constant to solve for & remove. Solve. (External solver: REDUCE).  
114lineX1 ~~> 245cxRect - 80halfWRect  
80halfWRect ~~> 245cxRect - 114lineX1  
245cxRect ~~> 114lineX1 + 80halfWRect

3. If a needed constant is not bound to a variable, insert a new let binding at a
scope visible to its usages.

4. Ranking heuristic:

1. Smallest AST (often all the same size).

2. Shortest distance between constants removed (measured in lines).

3. Prefer removing constants later in the program (less like to cause a
dependency inversion).

ABSTRACT

 40

1. Interpret the selection as a late (“proximal”) set of
program expressions. (Probably could be looser.)

2. Choose one of those expressions to be the return
expression of the function.

3. Iteratively find let bindings that (a) have free variables
and (b) are only used in the function body and add
those bindings to the function body.

4. Any remaining free variables become arguments.

REPEAT OVER FUNCTION CALL

 41

1. Set up an expression filter: Find [x, y] pair values in
provenance (execution history) of selected shapes and
thereby identify relevant x expressions, y expressions, and
point expressions in the program.

2. Interpret the programmer’s selections to a single expression
that contains either (a) one of the above point expressions,
or (b) both an x and y expression from above. Use
ABSTRACT to make this single expression a function over a
single point.

3. Map that new function over the point list.

SNAP DRAWING VIA VALUE HOLES

 42

1. Internally: Insert template code with value holes in place of the snaps.
(A value hole is a temporary expression that contains a value.) 
[x, y] = [123, 456]  
rect1 = rect … [??123, ??456] …

2. Examine the provenance of the value in each to fill the hole by either:

1. Using an existing variable (from the execution environment or from
the static scope, possibly moving an existing binding into scope).

2. Introducing (and using) a new variable for an existing expression.

3. Deconstructing some variable in the environment with a pattern
match to expose a needed value (and using the introduced variable). 
[_, y] = somePoint

DRAW CUSTOM FUNC VIA ROLES

 43

1. Functions that take two points, or a point and a distance, are drawable.

2. Types may be tagged with a set of roles, explaining the type’s semantic
meaning. (E.g. “This number is a width. This number is a color.”) Called
“brands” in APX. Similar to measure types, but not type-checked.

3. Roles are introduced by type aliases. 
type alias Color = Num  
rect :: … ! Color ! …

4. Roles propagate during the unification step of type inference.

5. Addition domain-specific rules for propagation, e.g.: 
aNum:{X} + bNum:{} ⇒ aNum:{X} + bNum:{HorizontalDistance}

6. Roles also determine the defaults for arguments.

Provenance

 44

Canvas Selection Values Expressions(s)
UI

Interpret
Provenance

Four Kinds of Provenance

 45

Numeric Traces (Chugh et al. PLDI ’16)

Offsets (numbers tagged with other coordinate)

“Based On” Provenance

“Parents” Provenance

“Based On” Provenance

 46

For a particular value, what other values at
other execution steps were used to produce it?

5.2.1 “Based On” provenance

When the programmer selects a shape or a widget on the canvas and invokes an action

such as Dupe, Sketch-n-Sketch first needs to trace back the value the programmer has

selected to one or more program expressions, and then affect the transformation.

In the current implementation, the context within which we interpret values is defined

to be the user-visible program itself, and not the provided Prelude of built-in code which is

implicitly imported into every program.
1

Below we discuss the extra tags we add to values during evaluation to record provenance,

and the algorithm for interpreting a value’s provenance as expressions in the program.

In the evaluator, at every step of execution the value produced is tagged with two items:

(a) the expression being executed, and (b) the values immediately used to evaluate the

expression, i.e. the values the result is based on. More formally, instead of the standard

big step relation Γ ⊢ e ⇓ v we employ Γ ⊢ e ⇓ ve,{v1,...,vn}
, where {v1, . . . , vn} is the set of

tagged values upon which v is based. We call this “Based On” provenance.

In “Based On” provenance, control flow is implicit. For example, the result of an

if-then-else expression is based on the value produced by the branch taken, but not

on the other branch nor on the conditional.

Similarly, the result of a function application is based only on the return value of the

function call. The application is not based on the function called. We are most concerned

with values “becoming” other related values, the how is implicit in where these values appear

in the code. But if needed, looking at the expression tagged to the return value will reveal

an expression inside the appropriate function and thereby the function itself. As well, the

application is not based on any of the arguments to the function call—transitively following

the “Based On” provenance of the return value will eventually discover any arguments used.

A selection of these evaluation rules are displayed in § 5.2.1.

5.2.2 Interpreting “Based On” provenance

“Based On” provenance answers the question,“For a particular value, what other values at

other execution steps were used to produce it?” As we now detail, we use the answer to that

question to answer our main query: “For a particular selected value, what expression(s) in

the program does it most likely refer to?”

Notice that transitively following the “Based On” provenance of a value yields a tree

of tagged values. The values near the root of the tree are newer, while the values at the

leaves of the tree were produced earliest in the execution. To this tree we apply the following

algorithm to interpret the value as a set of program expressions:

1. Philosophically, the context should be narrowed even further if the programmer has focused a particular

definition. Our examples have not required this yet.

27

5.2.1 “Based On” provenance

When the programmer selects a shape or a widget on the canvas and invokes an action

such as Dupe, Sketch-n-Sketch first needs to trace back the value the programmer has

selected to one or more program expressions, and then affect the transformation.

In the current implementation, the context within which we interpret values is defined

to be the user-visible program itself, and not the provided Prelude of built-in code which is

implicitly imported into every program.
1

Below we discuss the extra tags we add to values during evaluation to record provenance,

and the algorithm for interpreting a value’s provenance as expressions in the program.

In the evaluator, at every step of execution the value produced is tagged with two items:

(a) the expression being executed, and (b) the values immediately used to evaluate the

expression, i.e. the values the result is based on. More formally, instead of the standard

big step relation Γ ⊢ e ⇓ v we employ Γ ⊢ e ⇓ ve,{v1,...,vn}
, where {v1, . . . , vn} is the set of

tagged values upon which v is based. We call this “Based On” provenance.

In “Based On” provenance, control flow is implicit. For example, the result of an

if-then-else expression is based on the value produced by the branch taken, but not

on the other branch nor on the conditional.

Similarly, the result of a function application is based only on the return value of the

function call. The application is not based on the function called. We are most concerned

with values “becoming” other related values, the how is implicit in where these values appear

in the code. But if needed, looking at the expression tagged to the return value will reveal

an expression inside the appropriate function and thereby the function itself. As well, the

application is not based on any of the arguments to the function call—transitively following

the “Based On” provenance of the return value will eventually discover any arguments used.

A selection of these evaluation rules are displayed in § 5.2.1.

5.2.2 Interpreting “Based On” provenance

“Based On” provenance answers the question,“For a particular value, what other values at

other execution steps were used to produce it?” As we now detail, we use the answer to that

question to answer our main query: “For a particular selected value, what expression(s) in

the program does it most likely refer to?”

Notice that transitively following the “Based On” provenance of a value yields a tree

of tagged values. The values near the root of the tree are newer, while the values at the

leaves of the tree were produced earliest in the execution. To this tree we apply the following

algorithm to interpret the value as a set of program expressions:

1. Philosophically, the context should be narrowed even further if the programmer has focused a particular

definition. Our examples have not required this yet.

27

What expressions are associated with
a value selected in the output?

 72

Could you hide the code?

Fundamental limitations?

Other Limitations?

Will the techniques generalize?

Future Work

Could you hide the code?

 73

Maybe for simpler cases.

Can you represent the computation visually? (VPLs ")
Code only → simulate computer.

Output only → simulate code.

Consider the hover-to-preview interaction today.

(Later APX demos did hide the code)

Fundamental Limitations?

 74

So far: “Select and Act” in small steps.
Good for mouse, because that’s all a mouse can do.
Generally avoided large inference steps: ambiguity.

(exceptions: RELATE, REPEAT BY INDEXED MERGE)

…voice input?

bandwidthkeyboard > bandwidthmouse

Fundamental Limitations?

 75

Impossible to display all intermediates.

Solution so far: contextual visibility.

But this is fundamental: 
#intermediates >>>>> screen space

Other Limitations?

 76

Not much work on breaking relationships.  
(Edit history?)

More details need to be worked 
out so tools compose reliably.  

(Syntactic binding locations, e.g. Xs example.)

Will the techniques generalize?

 77

Canvas Selection Values Expressions(s)
UI

Interpret
Provenance

“Select & Act”

Future Work

 78

Transform DSL over value selections

Unified provenance

Visualize non-visual code

