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ABSTRACT

We propose output-directed programming, a paradigm whereby users directly manipulate the
output they wish to create while the system automatically builds a text-based program that
produces the output.

Specifically, we present output-directed programming techniques for programs that gen-
erate Scalable Vector Graphics (SVG) designs. Like a traditional graphics editor, the system
presents a direct manipulation interface for drawing and manipulating shapes on a canvas.
Unlike a traditional editor, the drawing is represented as a text-based program in an ordi-
nary functional programming language. Direct manipulation actions to draw, relate, group,
and repeat shapes are affected by transforming the program. Although the program remains
text-editable at any time, we show how the output-directed tools enable a variety of complex,
readable programs to be constructed without any text-based program editing.

We evaluate the techniques by implementing over a dozen parametric designs. While
some of the output-directed programming interactions are—by necessity—domain-specific,
we describe how others are implemented in a generalized way, to support their application
to other output-directed programming domains.
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CHAPTER 1
INTRODUCTION

1.1 Text

Most programs are created by writing text. Although flexible and familiar, text-based pro-
gramming presents a steep learning curve to novices as they approach programming, and
experts, though adept at manipulating text, are still “playing computer in their heads”!
as they construct their program. Given this observation, could development environments

better help programmers understand and construct programs?

1.2 Live Programming

In order to relieve the programmer of the need to simulate the operation of the computer
in their head, a line of work dubbed live programming has sought to quicken the feedback
loop while a programmer writes code. Generally, live programming systems continuously
display the output of the user’s program while it is being constructed. Updates to the
program’s code are immediately reflected in the live output display, without requiring the
user to manually invoke a compile-and-run action. Live programming systems have targeted
both educational [49, 60, 48, 28] and expert [19, 5] domains.

1.3 Output-Directed Programming

Could live programming be taken further? Programs are often incorrect while under construction—
instead of merely seeing the program’s incorrect output and having to hunt in the code for
the lines to modify, could the programmer instead directly manipulate the output itself to
automatically affect a program repair?

Such output-directed interactions could augment rather than replace the traditional text-
based paradigm for writing code, while at the same time offering streamlined interactions
for building up large portions of the program. But because the program is still text, any
functionality that cannot be added to the program by direct manipulation can still be created
by regular text editing. By building on top of text editing rather than supplanting it, the
power of traditional text-based programming is a lower bound for the power of such a system.

1. Chris Granger, quoted in [56]
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Figure 1.1: The two-pane interface for the SKETCH-N-SKETCH vector graphics programming
environment. The code box on the left contains a simple program whose SVG output is
displayed on the canvas to the right. Programs may be modified either by text edits in code
box or by direct manipulation of the output on the canvas. In this instance, the third circle
is selected on the canvas, revealing a color slider to manipulate the circle’s fill color; a second
slider at the bottom of the canvas controls the number of repeated blue boxes. Shapes may
also be moved and resized as in a traditional vector graphics editor.

1.4 SKETCH-N-SKETCH

To explore and extend the capabilities of output-directed programming, this work builds
upon the SKETCH-N-SKETCH programming environment introduced by Chugh et al. [12].
SKETCH-N-SKETCH is an interface for creating programs that output scalable vector graphics
(SVG) images. Unlike a traditional source code text editor, the SKETCH-N-SKETCH interface
of Chugh et al. [12] includes a basic set of output-directed programming functionality: once
a programmer has written a program that outputs SVG, they may directly manipulate
the output to move, resize, and recolor shapes. Appropriate constants in the program are
updated accordingly. We now introduce SKETCH-N-SKETCH in more detail and describe
its initial output-directed programming mechanisms. In the next section (§ 1.5), we will
summarize how the present work extends these mechanisms.

Figure 1.1 displays the two panes central to the SKETCH-N-SKETCH interface. The left
pane—the code box—is an ordinary source code text editor. The right pane—the canvas—
displays the program’s SVG output along with Ul elements for manipulating that output.
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The code box allows the user to create their program using traditional text editing.
The language in SKETCH-N-SKETCH is a simple, functional programming language—an
extended lambda calculus with syntax inspired by Elm [15].2 Figure 1.1 shows a simple
SKETCH-N-SKETCH program. The variables circlel, circle2, and circle3 each contain
a circle value produced by a call to the circle library function. These shape values are
immutable once created (akin to the picture type of Henderson [22, 23]). The circles share
the same color (the variable green) and the same y position (the variable circlesY), but
differ in their x positions and radii. Designs may also be produced through higher-order
programming. The anonymous function on lines 13-14 takes an index i and produces a
single rectangle whose x position depends on that index. Mapping this function over the the
indices 0 through 6 (i.e., zeroTo 7) creates a list of identical boxes, each differing only in
their x position. This list is stored in the boxes variable. Finally, the last statement of the
program is the program’s output: the circles and the boxes list are flattened (via concat)
into a single shape list which is given to the svg library function to produce a final SVG
value out of the shapes. This final SVG value is rendered graphically on the canvas.

Unlike a traditional programming environment, SKETCH-N-SKETCH’s output canvas is
not static. Similar to a vector graphics editor, SKETCH-N-SKETCH allows the user to di-
rectly manipulate the shapes on the canvas: the user may move, resize, or recolor shapes.
Modifications to the shape properties are realized by changing appropriate numeric constants
in the program. For example, dragging the third circle horizontally will change its = value
on line 10 (the literal 514). Spatial constraints between shapes are encoded in the program
structure: because the three circles share the circlesY variable for their y position, dragging
any circle vertically will modify the value of that variable (the literal 197 on line 2) and all
three circles will take on the new y position, maintaining their alignment. Non-spatial shape
properties such as color may also be manipulated: in Figure 1.1, circle3 is selected and its
fill color slider is displayed above the shape—dragging this slider will change the value of the
green variable on line 4 and thus the colors of all three circles. Finally, numeric literals not
associated with a shape property can still be exposed for direct manipulation by annotating
the literal with a range, e.g., {0-15}. A range annotation instructs SKETCH-N-SKETCH to
draw a slider on the canvas to manipulate the number. For example, on line 15, the numeric
literal 7 specifies the number of boxes to draw; that literal 7 is annotated with the range
{0-15}, which exposes a slider on the bottom of that canvas to modify the literal between
the numbers 0 and 15. Dragging the slider will change the number of boxes.

All of the dragging operations above are designed to operate fluidly. SKETCH-N-SKETCH
updates the program, reruns it, and renders the output continuously while the user moves
their mouse, providing multiple frames per second of feedback. Chugh et al. [12] thus call

this scheme live synchronization.

2. Unlike Elm, the SKETCH-N-SKETCH language offers heterogeneous lists as its only data structure.
Tuples and lists are thus conflated. The purpose of this footnote is to advise readers against adopting this
scheme in their own work.



To determine which numeric literals to change during live synchronization, the evaluator
in SKETCH-N-SKETCH records control flow-free traces on all numeric values [12]. For exam-
ple, consider the simple program let x = 5 in x + 10. SKETCH-N-SKETCH will evaluate
the program to the tagged number 150+02 where 0] + (9 is a numeric trace explaining the
origin of the value 15; within the trace, ¢1 and f9 refer to the program locations of the
literals 5 and 10 respectively. When, on the canvas, the user manipulates the number 15,
SKETCH-N-SKETCH chooses a location to change (using heuristics [12]), creates an equation
wherein the location to change is the unknown, solves the equation for the unknown, then
replaces the location in the program with the discovered value. For example, manipulating
15 to 30 induces the equation 30 = ¢1 + f2. If SKETCH-N-SKETCH chooses f1 to be the
unknown, other locations are replaced with their original values, producing 30 = ¢; + 10.
Solving the equation yields /1 = 20 which when substituted into the program results in the
new code let x = 20 in x + 10. In this manner, direct manipulation of numeric proper-
ties on the canvas—such as shape locations, sizes, and colors—can be immediately realized
by updating numeric literals in the program.

1.5 Contributions

As described above, the SKETCH-N-SKETCH of Chugh et al. [12] is an output-directed pro-
gramming environment, allowing program modification either by performing text edits to
the source code or by directly manipulating the output. These output-directed interactions,
however, only change numeric literals. To construct the program in the first place, the
programmer must type out the entire program using the keyboard. Could output-directed
programming in SKETCH-N-SKETCH be extended to help with program construction as well?

In this work, we do just that. We extend SKETCH-N-SKETCH with the ability to construct
whole designs solely via interactions on the canvas.

Specifically, we extend SKETCH-N-SKETCH with new direct manipulation tools for draw-
ing new shapes (by adding new definitions to the program), for relating the attributes of
shapes (by introducing new shared variables and arithmetic expressions), for grouping, ab-
stracting, and repeating shapes (by transforming individual definitions into reusable functions
abstracted over design parameters), and for refactoring the program based on selections in
the output (by associating output selections with program expressions and invoking standard
refactorings on those expressions). To facilitate these new features, we develop techniques for
tracking value provenance to associate output selections with relevant program expressions.

We also make several Ul choices to further enhance the process of program construction.
We expose selected intermediate execution products on the canvas for manipulation, so the
programmer is not limited to manipulating their final output, and we offer focused editing
to allow the programmer to insert nested definitions and create recursive functions.

These output-directed programming tools are used to construct several high-level, read-
able programs that generate non-trivial designs.
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1.6 Outline

The user interface and program transformation techniques are best described by example.
Therefore, after discussing related work (Chapter 2), a substantial portion of the presentation
is a detailed description of how three example programs can be built in SKETCH-N-SKETCH
solely using output-directed program transformations (Chapter 3). Having introduced most
of the tooling in context, we then briefly enumerate each tool’s operation (Chapter 4) before
exploring shared underlying technical mechanisms that facilitate that operation, such as our
methods for provenance tracking (Chapter 5). Afterwards, we evaluate the system by con-
structing another 13 example programs (for a total of 16 examples), focusing our discussion
on tasks drawn from the benchmark suite proposed in Watch What I Do: Programming by
Demonstration [1] (Chapter 6). Finally, we discuss lessons learned, limitations, and future
work (Chapter 7), and conclude (Chapter 8).



CHAPTER 2
RELATED WORK

In this work, we present an output-directed programming system that allows the programmer
to either text-edit their program or to directly manipulate the output of their program to af-
fect a program repair. We specifically focus on programs that create vector graphics designs.
Borrowing familiar Ul interactions from shape-drawing applications, we adapt those actions
to create and transform shape-drawing programs written in a general-purpose functional
programming language. Several related approaches also offer interfaces to create parametric
designs or to transform programs via direct manipulation.

2.1 Parametric Computer-Aided Design (CAD)

Feature-based parametric CAD systems record user actions as a series of steps that together
act as a program encoding the creation of the design. Elements may be parameterized based
on previously created elements (e.g., a screw head may be defined to be 1.5x wider than the
screw cylinder). If an element property is changed, dependent actions in the sequence are
re-run to update the design. Among CAD systems, EBP [47] is notable for allowing the user
to perform a step-by-step demonstration to create loops and conditionals.

2.2 Drawing With Constraints

Several systems integrate constraint specification into the visual design process, but are
targeted at drawing creation and thereby do not seek to expose a traditional, text-based
programming language (e.g., [65, 26]). Of these systems, Apparatus [51], Recursive Draw-
ing [52], and Geometer’s SketchPad [25] are notable for supporting recursion.

In contrast to these systems, we are more interested in programming qua programming
rather than in creating visual (or geometric) design, hence we explicitly expose the text-
based program for editing. Although we expect our techniques might be useful for the actual
creation of parametric drawings, we primarily view parametric drawing as a convenient initial
domain for discovering how one might build programs by output manipulation. Thus, we
have focused the development of our tool on exploring novel program transformations rather
than on optimizing the usability for practical design tasks.

2.3 Constraint-Oriented Programming (COP)

Other constraint-oriented systems, following in the footsteps of Sketchpad [59], explicitly
view building a constrained system as a programming task [6, 24, 16]. While offering varying
degrees of visibility into the code, these systems are distinguished by running constraint



solvers alongside the program, querying those solvers during runtime to affect the execution
of the program.

Our system instead follows a standard execution model. Rather than running a constraint
solver while the program executes, any “constraints” are expressed as ordinary math in the
program (e.g., x2 = x1 + w/2) and are executed normally. New constraints may be added
by changing the program—i.e., adding math to the program—when the program is not
running. That new math may be automatically generated by a solver, but the solver is
invoked as part of program transformation, after and separate from program execution.

2.4 Programming by Demonstration (PBD)

To offer end-users some of the benefits of programming, a class of interactions dubbed pro-
gramming by demonstration (PBD) [13] allow users to, instead of typing out code, specify
programs by demonstrating the desired actions to the computer. Taking the role of a learner,
the computer infers the intent of the demonstrated actions and constructs a program.

Several early PBD approaches used shape drawing as a domain for exploring these non-
textual programming techniques. PBD systems usually rely on a visual representation of the
program rather than a textual one (e.g., [31, 34]), or show actions step-by-step [38]. We also
use shape drawing as a concrete application domain, but we do not hide the program text.

Although not as visual as peer PBD systems, Tinker [35] is notable for supporting re-
cursion by demonstration—indeed, any Lisp expression may be created. Unlike our work,
manipulations are performed on a symbolic representation of the example not far removed
from the underlying Lisp. But, like our work, the underlying code is set in a traditional
programming language and that code is featured in the UL

More recently, PBD techniques have been developed with a more practical bent. These
systems address a wide variety of domains, such as data visualization [61], mobile applications
for collaboration [14], web scraping [3, 9], and API discovery [67]. Each of these systems
focus on solving a particular domain task but, unlike the system presented here, either do
not expose the program as plain text in an ordinary language, or do not offer demonstration-
based editing after the initial program is generated.

A further philosophical difference should be noted. Traditional PBD systems are gener-
ally organized around a user demonstrating an imperative sequence of actions on a stateful
system. Each user action generates one or more (effectful) statements in the language (e.g.,
“Add a circle at such-and-such position”). Although the user actions in our system are
also given step-by-step, our system instead builds functional, effect-free programs. Rather
than each user action generating one or two imperative statements, each user action instead
specifies a program transformation that may not add any expressions to the program, in-
stead modifying one or more existing expressions. The underlying artifact always remains a
pure functional program. We embrace this approach because we believe such techniques for
transforming side-effect-free expressions are more likely to generalize to non-visual domains.

7



2.5 Output-Directed Programming

A number of recent systems offer a regular text-based programming experience augmented
with the ability to directly manipulate output to enact code changes. The changes that can
be affected by output-directed manipulation may be “small,” e.g., changing constants [12, 32,
39], strings [63, 54, 32, 39], or list literals [39], but, like our improved SKETCH-N-SKETCH,
several systems enable “larger” program changes via output manipulation. We discuss two
such systems below.

Transmorphic [53] re-implements the Morphic UI framework [36] using static, functional
(i.e., stateless) views. Transmorphic retains Morphic’s ability to directly manipulate morphs
(i.e., Ul elements), but affects the manipulations by changing the view’s text-based code
rather than changing live object state. The programmer may use direct manipulation to add
morphs, remove morphs, or change a morph’s primitive properties. Transmorphic’s code
transformations are based on associating each visual morph with a syntactic location in the
program via a static analysis pass over the program. We instead use runtime tracing built
in to the evaluator to map output values to program expressions.

Like the work presented here, APX [40, 41] is a two-pane (code box and output canvas)
environment for creating programs that draw pictures. APX additionally supports creation
of realtime visual simulations, updated live as the programmer edits their code. On the
output canvas, APX supports direct manipulation of, e.g., shape position and size, thus
changing numbers in the program. A few larger changes—namely, grouping and insertion
of new shapes—are supported as well, although most of APX’s interactions are focused on
refactoring code by directly manipulating program terms in the code box.



CHAPTER 3
OVERVIEW EXAMPLES

We introduce the improved SKETCH-N-SKETCH system via three examples, explaining the
workflow to construct each example. Our main example (“Koch Snowflake”) introduces the
workflow and a number of SKETCH-N-SKETCH’s tools and Ul features. Two shorter examples
follow (“Tree Branch” and “Target”) to showcase features not exercised by the main example.

Although we are able to perform regular text-edits to our program at any point during
its construction—and we may do so without losing access to the output-directed tooling for
later edits—we choose to limit ourselves to performing only output-directed edits, thereby
highlighting the expressive power of SKETCH-N-SKETCH’s new tooling.

In the text below, the names of our new tools are written in small caps (e.g., ADD TO
OuTpuUT), with boldface the first time the tool is introduced (e.g., ADD TO OUTPUT).
Code examples shown are as produced by SKETCH-N-SKETCH—newlines inserted for for-
matting purposes in this paper are escaped by a “\” backslash.

3.1 Example 1: Koch Snowflake

For the first overview example, we construct a program that

draws a von Koch fractal snowflake [62]. Figure 3.1 shows ?

the final design, created by recursively repeating the adja-

cent motif. Points labeled 0 are inputs; points labeled 1 will Q O @) @)
be placed % and % of the way between the inputs. A final 0 1 1 0

point (labeled 2) will be placed equidistant from the latter,
forming an equilateral triangle. Repeating the motif between pairs of points will recursively
define the fractal.

This motif requires two helper functions not provided in the standard library, so our work
proceeds in four phases:

(a) We construct a helper function that, given two points, computes a point % of the way
between them (Figure 3.1a). This function, reused backwards, will produce the % point.

(b) We will create a function that, given two points, computes a third point that completes
the equilateral triangle with its two input points (Figure 3.1b).

(c) We use these two helpers to build a function that creates the motif and recursively
repeats the motif within itself. This forms the points of a Koch curve, i.e., one side of the
final snowflake (Figure 3.1c).

(d) We complete the snowflake by laying out three instances of Koch curve points along
the sides of an equilateral triangle and then attaching a polygon to the points.
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Figure 3.1: A Koch snowflake fractal constructed entirely via output-directed programming.

3.1.1 Omne-Third Point Function

Tools Highlighted: DRAW POINT, RELATE, ABSTRACT, RENAME IN OUTPUT, DELETE
Ul Features Highlighted: Toolbox, Point Widgets, Call Widgets, Output Tools Panel

First, we need to construct a helper function which takes two

points and returns a point % of the way between them. The ini-

tial program template provided by SKETCH-N-SKETCH is almost o)
entirely blank, defining only an empty list of SVG shapes: ®)

0]

svg (concat [

D

We will build this first helper function by demonstration; to do so we, need example points
to work with. In this work, we extended SKETCH-N-SKETCH with drawing tools for inserting
new definitions into the program. These tools are visible in the toolbox on the right side of
Figure 3.1; a number of these tools will be demonstrated throughout this and the following
examples. In this case, we select the “Point or Offset” tool from the toolbox (Figure 3.1d).
When we click on the canvas to DRAW POINT, SKETCH-N-SKETCH inserts a new point
definition at the top of the program:
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[x, y] as point = [87, 206]

svg (concat [

D

Although the new x, y, and point variables are not yet used—SKETCH-N-SKETCH has
not changed the empty shape list at the end of our program—a point appears on our canvas
at (87,206). We modified SKETCH-N-SKETCH’s evaluator to draw widgets on the canvas
when certain types of values are encountered during execution of the program. In this case,
even though the point is not part of our program’s output, whenever the evaluator encounters
a number-number pair during execution a point widget corresponding to that coordinate is
emitted as a benign side effect. Point widgets allow points in the program to be selected or
manipulated on the canvas, even if a point is only an intermediate product during execution
and does not occur in the program’s final output. We will see examples of widgets for other
intermediate execution products later.

Continuing with the “Point or Offset” tool, we add two more point definitions in a similar
fashion, and then drag the points with the “Cursor” tool into roughly the right places, with
one point % of the way between the other two. The constant numbers in our program for
the points’ coordinates are updated accordingly via SKETCH-N-SKETCH’s pre-existing live
synchronization mechanism [12], as discussed in §1.4.

[264, 131]

[x3, y3] as point3

[x2, y2] as point2 = [153, 178]

[x, y] as point = [87, 206]

svg (concat [

D

We would now like to tell SKETCH-N-SKETCH to relate the % point (point2 above) in
terms of the other two. Like traditional GUIs, SKETCH-N-SKETCH supports selecting items
on the canvas, either by clicking the items or by dragging a selection box around the items
to select. We drag-select the three points on the canvas. Making a selection causes a floating
“Output Tools” panel to appear, offering possible actions to transform the program based
on our selection. This Output Tools panel is depicted in Figure 3.2. (It is worth noting that
all the tools shown in Figure 3.2 are novel to this work; Chapter 4 provides tool descriptions,
though most tools will be demonstrated throughout this and the following examples.)

In our case, we hover the mouse over the RELATE tool. On hover, SKETCH-N-SKETCH
attempts to synthesize an arithmetic expression that, were it substituted into the program,
would define one of points in terms of the others and leave our points in roughly the same
place; specifically, the math inserted in place of a numeric constant must evaluate to within
20% of the original constant’s value and the distances to the the other selected values must
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Output Tools X
Add to Output
Reorder in List »
Make Equal (88E) »
Relate >
Dupe (88D)
Merge
Group
Abstract
Repeat by Indexed Merge
Repeat With Function pointsBetweenSepBy
Repeat With Function nVerticalPointsSepBy
Repeat With Function nHorizontalPointsSepBy
Repeat With Function nPointsSepBy

Repeat With Function nPointsOnSegment

v v v v v v v v v v

Repeat With Function nPointsOnCircle

Figure 3.2: The Output Tools floating panel appears when some item on the canvas is
selected. Various program transformations are offered.

not change more than 20%.1 After about 20 seconds of guess-and-check work, three possible

results are shown in the RELATE tool submenu.2

L

» pointx=x2*1.5!-x3/2! = pointy =y2*1.5!-y3 /2!

point2 x2 =x/1.5'+x3 /3! = point2y2=y/1.5! +y3 /3!
>
point3 x3 =x2*3!-x*2! = point3y3 =y2*3!-y*2I

I
The RELATE tool synthesized three results—although depending on where our points
were placed, there could be as few as zero or as many as 20 or more results. The second result
is mathematically equivalent to what we might deduce by hand (e.g., zoyt = 21+ %(mg —1x1),
and similarly for y), so we first hover over the result—which previews the new program in
the code box and the new output on the canvas—and then click to choose that result.

[x3, y3] as point3 = [264, 131]
[x, y] as point = [87, 206]

[x2, y2] as point2 = [ x / 1.56!+ x3 / 3!, y / 1.5! + y3 / 3!]

1. Note that = coordinates and ¥y coordinates are related separately, so the 20% constraint is 1D distance
along each single coordinate. The only constraint between the = and y coordinates is that the arithmetic
term must be identical for both directions, modulo variable names.

2. The freeze annotations on 1.5! and 3! indicate that these numbers should not be changed during live
synchronization [12].
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The point2 definition has been rewritten using the synthesized arithmetic terms. The
point definition, which previously was the last definition, has been moved upward so its x
and y variables are in scope for point2.

To turn this concrete expression into a reusable function, we select all the points again
and invoke ABSTRACT from the Output Tools panel. The ABSTRACT tool attempts to
abstract some expression within our selection over that expression’s free variables. In our
case, there are three possible results, which abstract over: only the math for the x coordinate;
only the math for the y coordinate; or the entire % point. We choose the last result.

[x3, y3] as point3 = [264, 131]
[x, y] as point = [87, 206]

point2Func [x3, y3] [x, y] =
[x/ 1.5+ x3 /3!, y/ 1.5 +y3/ 3!]

[x2, y2] as point2 = point2Func point3 point

A new function—called point2Func—has been placed in our  point2Fung
code and the old point2 definition now calls this function to [e)
produce its point. If we hover the point emitted by this func-
tion on the canvas, a gray outline appears labeled with the ®)
text point2Func. The gray box is a call widget—emitted by
the evaluator whenever a user-defined function is called in the
program—indicating that the point was produced by a call to point2Func.

A name label on any widget may be clicked to RENAME IN OUTPUT. We thus click
point2Func, type oneThirdPt into the text box that appears (not shown in the above
screenshot), and hit Return. The function definition and its one use are appropriately
refactored to be named oneThirdPt.

When we created this function, it also became a new drawing tool in our toolbox (Fig-
ure 3.1e). Using type inference, SKETCH-N-SKETCH realized that our function takes two
points and could therefore be drawn with the mouse. We will use this new tool later.

Our first helper function is now complete, so we no longer need the example points used
to build the function. We select all three points and press the Delete key to DELETE.
Perhaps surprisingly, DELETE only removes the definition for point2 but not the other two
points. Only one definition was removed because both of the other points were also involved
in calculating point2—DELETE removed something about all three points by discarding
the point2 binding. We discuss more details on how SKETCH-N-SKETCH interprets the
provenance of values in Chapter 5. Selecting the remaining two points and pressing Delete
again removes their two definitions from the program. We are left with our oneThirdPt
helper function and an empty shape list.
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3.1.2  Equi-Tri Point Function

Tools Highlighted: MAKE EQUAL
Ul Features Highlighted: Distance Features

We would like our second helper function to take in two points and return a O

point equidistant from both, as if forming an equilateral triangle. As before,

we place three points on the canvas in roughly the appropriate positions.

Unlike before, the math we need to enforce the points’ equidistance is too

complicated for the RELATE tool to discover by guessing. Instead, when we

select the three points, pink lines appear between the points. These pink lines are distance

features that, when clicked, select the distance between points. Distance features are only

shown between selected points to avoid cluttering the canvas.
We click the three pink lines to select the distances

and invoke the MAKE EQUAL tool, which queries an

external solver (REDUCE |[21]) to discover how to replace Omy3

constants in our program with mathematical expressions X3 [x2, y2] as point2

Omy2

[x3, y3] as point3

that enforce the desired equality. In our case, because
there are many options for which items might be defined
in terms of the others, we are shown a large number of [X, Y] as point
solutions. We choose the second result (only to avoid Oy
producing an extraneous offset widget, about which we
defer discussion until our second example below). X

Now one of the points is mathematically constrained to be equidistant from the other
two. As before, we select the points, ABSTRACT the concrete math into a resuable function,
and RENAME IN OUTPUT on the call widget label to name our function equiTriPt. Again,
based on its inferred type signature our new function appears in the toolbox (Figure 3.1e).

We delete our example points, leaving the final code for our two helper functions:

equiTriPt [x3, y3] [x2, y2] =
[ (x2 + x3 + sqrt 3! * (y2 - y3))/ 2! \
, (y2 + y3 - sqrt 3! * (x2 - x3)) / 2!]

oneThirdPt [x3, y3] [x, y] =
[x/ 1.5'+x3/ 3!, y/ 1.50 +y3/ 3!]
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3.1.83 Recursive Koch Curve Points Function

Tools Highlighted: DrRAW FUNCTION, ADD TO OUTPUT, REORDER IN LIST
Ul Features Highlighted: Snap-Drawing, Call Focusing, Focused Drawing, List Widgets

The principal component of our design is the fractal motif, which we will repeat inside
itself to form the points of the fractal.

We choose our oneThirdPt helper function in the toolbox and draw it on the canvas.
This DRAW FUNCTION action inserts the following definition into our program, calling our
helper with two new points:

oneThirdPt2 = oneThirdPt [65, 199] [235, 141]

This call gives us the endpoints of the motif, and one O
of our % points. To get the other, we draw oneThirdPt Y O
backwards, starting from one endpoint (in green at right,
depicted while still drawing) and then ending at other O
endpoint to snap-draw [18] so the existing endpoints are
reused instead of adding new points—the endpoints are pulled out into variables and used
for both calls.

point = [65, 199]
point2 = [235, 141]

oneThirdPt2

oneThirdPt point point2

oneThirdPt3

oneThirdPt point2 point

We then switch to our equiTriPt helper function and snap-draw it between our % and %

point. The just-created oneThirdPt2 and oneThirdPt3 variables are used as arguments to
the inserted function call:

equiTriPt2 = equiTriPt oneThirdPt3 oneThirdPt2

We now have our motif in terms of example points.
Selecting our points, we then ABSTRACT. ABSTRACT
notices that our % and % point definitions are only used
inside this new function, and so they are pulled into o o
the new function body (as seen in the next code listing S O
below). Using RENAME IN OUTPUT, we name the function makeKochPts.

Now, we want to repeat the motif inside itself. If we select makeKochPts from the toolbox
and draw it on the canvas, SKETCH-N-SKETCH will just insert another call at the top level
of the program. Instead, we need the function to call itself recursively.
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In this work, we added the ability to focus on a particular definition. Setting focus on a
definition has two effects: (a) the canvas only displays the output of the focused definition,
and (b) drawing operations add code to the focused definition rather than to the top level
of the program.

We focus makeKochPts by clicking on the gray call widget border. The focused function,
and the example call which provide example arguments for its execution and display, are
then specified by special comments automatically inserted in the program.

-— **x Focused Definition ***

makeKochPts point point2 =
let oneThirdPt2 = oneThirdPt point point2 in
let oneThirdPt3 = oneThirdPt point2 point in
equiTriPt oneThirdPt3 oneThirdPt2

equiTriPt2 = -- ***x Example Call *xx
makeKochPts point point2

On the canvas, the focused function dis- makeKochPts

plays its arguments, with buttons for removing point X 4» point2 X <»
or reordering each. The inputs of our function
are colored orange, while the outputs are col-
ored blue. With the function focused, we can
draw it inside itself to create a recursive call.
With the makeKochPts tool, we SNAP-DRAW
the function between the first pair of points.
SKETCH-N-SKETCH inserts an if-then-else
recursive skeleton and the recursive call.

makeKochPts point point2 =
let oneThirdPt2 = oneThirdPt point point2 in
let oneThirdPt3 = oneThirdPt point2 point in
let equiTriPt2 = equiTriPt oneThirdPt3 oneThirdPt2 in
if 77terminationCondition then
equiTriPt2
else
let makeKochPts2 = makeKochPts point oneThirdPt3 in
equiTriPt2

To avoid infinite recursion, the if-then-else skeleton branches on a specially named
hole, ??terminationCondition. During evaluation, ??terminationCondition returns False
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the first time the function is encountered in the call stack, and True if the function appears
earlier in the call stack, affecting termination at a fixed depth of two. This allows us to run
the program and manipulate its output even before we replace the hole expression later.

We snap-draw makeKochPts between the remaining three pairs of points; the calls are
inserted in the recursive branch.

if ?7terminationCondition then
equiTriPt2

else
let makeKochPts2
let makeKochPts3
let makeKochPts4
let makeKochPtsb

equiTriPt2

makeKochPts point oneThirdPt3 in
makeKochPts oneThirdPt3 equiTriPt2 in
makeKochPts equiTriPt2 oneThirdPt2 in
makeKochPts oneThirdPt2 point2 in

Our design looks like a fractal now, but Recursive Case
makeKochPts not <| ??terminationCondition

the output of the function consists only of
point X 4» point2 X 4»

equiTriPt2, shown in blue. All the white
points are only intermediates. Moreover, most

of those intermediates are inside calls to the makeKochPts @)
base case of our function—but we are focused 0000
on the recursive case. We must first modify O O O o

0000 0000

the output of the base case, before finalizing
the recursive case. We hover an output point

of a recursive call to expose its call widget,
whose border we then click to focus the base case.

Focused on the base case (shown at right), we want its output
Base Case

fition
just the blue equiTriPt2. The fifth point will be provided by the point X 4» point2 X <4»

to consist of the leftmost four points of the motif, rather than akekochpts

neighboring call to the base case.

We click-select the three additional points we would like to O
be in the output,® and then choose ADD To OUTPUT from the 0000
Output Tools menu. In order for the function to output multiple
points, the function must now return a list of points. The return
expressions of both branches of our function are therefore wrapped in lists, and the three
selected points are added to the list in the base case.

3. Click-select instead of drag-select because, often, multiple point widgets are created exactly on top of
each other. Drag-select will silently also select these covered points!
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if ??terminationCondition then
lequiTriPt2, oneThirdPt3, oneThirdPt2, point]
else

[equiTriPt2]

Alas, the points are not in the proper order with the list. We must fix the ordering so
the polygon we will attach to all our Koch points will be drawn correctly.

We select one of our points—which highlights the variable usage in the code so we know
where it is in the list—and invoke REORDER IN LIST as necessary to move the point
forward, backward, to the beginning, or to the end in the list. When all our points are
appropriately reordered in this way, we are done with the base case. We hit Escape to
defocus the base case, and then re-focus the recursive case.

The recursive case currently only returns [equiTriPt2]; maglenchpts

instead, we need it to combine all the point lists returned from makeKochPts2 o
the recursive calls. To select the lists returned from the base O oL
cases, we hover one of the points of those lists, which reveals a O O

list widget—a list widget is emitted by the evaluator whenever O 00O

a program expression evaluates to a list of graphical elements.

The list widget has a dashed gray border that we may select.

We select all four returned lists from the calls to the base case and invoke ADD TO OUTPUT,
producing the code below:

if 77terminationCondition then
[point, oneThirdPt3, equiTriPt2, oneThirdPt2]
else
let makeKochPts2 = makeKochPts point oneThirdPt3 in
let makeKochPts3 = makeKochPts oneThirdPt3 equiTriPt2 in
let makeKochPts4 = makeKochPts equiTriPt2 oneThirdPt2 in
let makeKochPts5 = makeKochPts oneThirdPt2 point2 in
concat [[equiTriPt2], makeKochPts2, makeKochPts3 \
, makeKochPts4, makeKochPtsh]

SKETCH-N-SKETCH realizes we are trying to combine lists together and inserts a concat
(flatten) call so the function produces a list of points, rather than a list of lists of points.
SKETCH-N-SKETCH remembers the order in which we selected the list widgets and inserts
the variable uses in the same order, so no reordering is required provided we selected the
lists in order. (We can inspect the order by hovering the mouse over each list widget border
on the canvas, which highlights the corresponding expression in the code.)
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The [equiTriPt] singleton list from the original return value of the function is extrane-
ous; we find and DELETE its list widget, leaving a return expression of:

concat [makeKochPts2, makeKochPts3, makeKochPts4, makeKochPts5]

All the points are now in the output of makeKochPts (@)
(and therefore displayed in blue). One last item remains: 0000
we must choose a termination condition. The focused @) @) o o
call widget for makeKochPts displays the conditional for © © O O 0000

the recursive case as not <| ?7terminationCondition which we can click to CHOOSE
TERMINATION CONDITION. Currently, SKETCH-N-SKETCH offers only one kind of auto-
matically generated termination, fixed depth, which we choose. A depth argument is added
to our makeKochPts function which is decremented on the recursive calls. These changes are
visible in the final code Figure 3.1. Additionally, the original example call to our function is
given a depth of 2 with a {1-5} range annotation so that SKETCH-N-SKETCH draws a slider
on the canvas for modifying depth [12].

equiTriPt2 = makeKochPts 2{1-5} point point2

3.1.4 Koch Snowflake Polygon
Tools Highlighted: GROUP, ATTACH POLYGON TO POINTS

Now to make a snowflake! We have a function that produces

)
points for one side of the Koch snowflake. We create an equi- 00 0O
lateral triangle with equiTriPt (shown at right) and then O ©O o o
snap-draw makeKochPoints along its sides. Q O0O 0 O0O0Oo

To make a single list of all our points, we select the three
list widgets for the three sides’ points and invoke GROUP.
GROUP means gather into list; here it offers either to make a
list of lists or to concat (flatten) all our lists together. We
choose this latter option and RENAME the resulting group to
snowflakePts. To finish the design, we choose the “Poly-
gon” tool from the toolbox and click the snowflakePts list
widget, which affects ATTACH POLYGON TO POINTS. To
polish the code, we select and equalize the three depth sliders for each of our three calls
to makeKochPts, obtaining a single depth variable, and then perform a bit of renaming to
result in code shown in Figure 3.1. We grab the single depth slider, set the depth to three,
and find the menu option to hide all the widgets. We're done!
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Figure 3.3: The completed Koch snowflake fractal.
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3.2 Example 2: Tree Branch

Tools Highlighted: DRAW OFFSET, REPEAT OVER LIST
Ul Features Highlighted: Offset Widgets

To highlight the new offset widgets and the repetition tools, we construct the tree branch de-
sign shown in Figure 3.4 on the next page. The construction involves a rhombus abstracted
over its center point, which is then repeated over a list of points we draw in the program.
For this example and the following, we omit mentioning uses of RENAME IN OUTPUT.

We construct the rhombus around a central point using offsets, 102 .
which are simple additions to or subtractions from an z or y O
coordinate. The “Point or Offset” tool (Figure 3.1d) affects
DRrRAW OFFSET when dragged on the canvas, inserting an addition or subtraction oper-
ation, e.g., x0ffset = x + 102. If not drawn from an existing point, a starting point is
inserted as well.

Offsets may snap their amounts to each other while drawing. If we draw a second offset
of the same length in the opposite direction, a variable is inserted for the offset amount:

num = 102
num num

x0ffset = x + num O

O]

x0ffset2 = x - num

We leverage this amount snapping to quickly create the skeleton o
of the leaf rhombus, as shown at right. We then draw a polygon,
snapping to each offset endpoint, and ABSTRACT the resulting shape halft

into a function parameterized over [x, y], halfW, and halfH. We will
. halfw halfw

Y
U

attach instances of this function over the branch.

The branch is also constructed with offsets, so that it forms an
axis-aligned isosceles triangle. We place two additional “deadspace” halft
offsets inward from the ends of the branch to form the start and end

of the attachment points for the leaves. o

We then create these attachment points by
drawing the pointsBetweenSepBy function on the deadspace
branch, one of several functions in the stan- "

dard toolbox that returns a list of points. The

pointsBetweenSepBy function returns points sep-

arated from their neighbors by a fixed distance.
With this function, making our branch longer will
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add more leaves rather than spacing them out.
Finally, to repeat our leaf rhombus over the
points, we first select the one copy of the rhombus
on the canvas. The Output Tools panel then of-
fers multiple tools for repeating the shape. We may
REPEAT WITH FUNCTION, repeating the shape
over a new call to any one of the point-list-producing

functions available, or we can REPEAT OVER LIST, repeating the shape over an existing
point list in our program. We REPEAT OVER LIST over the attachment points we just drew.
The tool creates a new function abstracted over just a single point (rhombusFunc2 below)
and maps that function over our leafAttachmentPts, completing our leafy branch.

rhombusFunc2 ([x, y] as point) =
let halfW = 40 in
let halfH = 83 in
rhombusFunc point halfW halfH

repeatedRhombusFunc2 =
map rhombusFunc2 leafAttachmentPts

Figure 3.4: The completed tree branch design, utilizing offset widgets and repetition in its
construction. Shown with widgets hidden.
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3.3 Example 3: Target

Tools Highlighted: REPEAT BY INDEXED MERGE, FiLL. PBE HOLE

Repeating over a point list allows copies of shapes to vary only in their spacial positions. To
support other repetitions scenarios where the varying attributes could be calculated from an
index (i.e., 0,1,2,...), we offer a programming by demonstration workflow which we now
briefly illustrate through the construction of a target.

We draw three concentric circles snapped to the same center point and change the color
of the middle circle. We select the three circles and invoke REPEAT BY INDEXED MERGE,
from which we select the second of two results (which differs from the first only in that it
adds a reverse on the last line below, so that i=0 always for the smallest circle).

circles =
map (\i ->
circle \
?2?7(1 => 0, 2 => 466, 3 => 0) \
point \

?7(1 => 114, 2 => 68, 3 => 25))
(reverse (zeroTo 3{0-15}))

The program maps an anonymous function that takes an index (\i -> ...) over the list
[2,1,0]. Each index is thus transformed into one of our circles. The anonymous function
contains an expression form by merging our original three circle definitions. The syntactic
differences between the three original circle expressions—radius and color—have been turned
into what we call programming-by-example (PBE) holes, represented by ?7(...). The first
PBE hole above can be read as “the first time this expression is executed it should return
0, the second time it is executed it should return 466, and the third time 0.”

When a program contains PBE
holes, SKETCH-N-SKETCH remem- Output Tools X |
bers the execution environments seen FillHole 1 (fill)  » ifi==1then 466 else 0

by each hole and employs sketch- i
Y by FillHOle2(1) ¥ 4 110121 == 0! then 0 else 466

based synthesis [55] to suggest pos-
sible fillings for each hole. Only the
variable i ever differs in the execu-

Output Tools X

tion environments at these holes, so Fill Hole 1 (fill)  »
all possible fillings are based upon i, | Fill Hole 2 (r) > 22+i*46
as shown at right.

For the first hole, we choose the mod i 2 == 0! conditional to obtain alternating colors.
For the second we choose the only option, a base+ixwidth expression, to calculate the radii.

23



Finally, note in the code listing on the previous page that the expression that generates
the indices, zeroTo 3{0-15}, contains a range annotation which exposes a slider on the
canvas. The slider allows us to change the number of circles, similar to depth parameter in
the Koch snowflake example. We choose to display five circles for the final design.

Figure 3.5: The final target design, constructed by filling PBE holes produced with REPEAT
BY INDEXED MERGE. Shown with widgets hidden.
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CHAPTER 4
TOOLS

In this chapter, we catalog the output-directed programming tools and associated Ul ele-
ments we added to SKETCH-N-SKETCH. Below, we divide the tools into four categories,
tools to draw new items into the program, tools to relate features of existing items, tools to
group, abstract, and repeat shapes, and tools to refactor the program from the output.

4.1 DRAW

4.1.1  Drawing Shapes

Shape drawing tools insert a new definition into the program and insert a usage of the
new variable in a location such that the shape appears in the output. SKETCH-N-SKETCH
attempts to add the new shape variable to the list literals in the program and succeeds when
the size of the output increases by the expected amount. Because concat is often used
to flatten shape lists, both shapeVar and [shapeVar] are candidates for insertion into the
shape list. A static dependency analysis is used to avoid drawing into existing group lists
(i.e., the system prefers not to draw into lists that other lists depend on, because such a list
is probably a shape group rather than the main shape list).

4.1.2  Custom Drawing Functions

Functions in the standard library and program with an appropriate type signature are ex-
posed in the toolbox as drawing tools. With the exception of the Cursor, Point or Offset,
and Polygon tools, all tools shown in Figure 3.1 are such appropriately typed functions. A
function is exposed as a drawing tool if either (a) two of its arguments are points, or (b) one
of its arguments is a point and at least one other argument is some distance. In §5.5, we
discuss the role inference used to determine if a numeric argument is a distance.

4.1.8  Focused Drawing

SKETCH-N-SKETCH provides three ways to focus an expression or definition. Call widgets on
the canvas may be clicked to focus on that particular function call, as in the Koch example
(§3.1.3). Or, if a selected item can be interpreted as a coming from the right hand side of
a let-binding, then a Focus DEFINITION tool is displayed in the output tools. Finally, an
enterprising programmer may text-edit special comments into their code directly.

If a function or a shape group is focused, drawing actions will attempt to add shapes
to that function or group rather than the main shape list. As shown in the Koch example,
focused editing enables recursive drawing.
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4.1.4  Draw Point

In response to a single click on the canvas, the DRAW POINT OR OFFSET tool inserts a
[x, y] as point = [123, 456] binding at the top of the drawing context. To expose
these points for manipulation, a point widget is produced during evaluation whenever a
numeric pair is encountered in the program.

4.1.5 Draw Offset

In response to a mouse drag on the canvas, the DRAW POINT OR OFFSET tool inserts a
offset = existingCoordinate + 123 binding into drawing context. The tool also inserts
a new point if the offset was not drawn from an existing point. Offset widgets are produced
during evaluation when a number tagged as an x or y coordinate is added to some number.
These tags originate from the evaluation of pair ([el, e2]) expressions—if both elements
are numbers, each is tagged as an x or y coordinate and is also tagged with the sister
coordinate to allow any offset widgets later produced to be drawn in the appropriate place
on the canvas.

4.1.6 Dupe

The DUPLICATE tool examines the selected value’s provenance to find an expression in the
program (see §5.2.2) which is then duplicated into a new binding and (potentially) added
to the shape list.

4.1.7 Delete

Pressing the “Delete” key interprets the selected values into expression(s) (see §5.2.2) and
attempts to remove them. If the last variable usage of a binding is removed, the binding is
also removed.

4.2 RELATE

4.2.1 Make Equal

The MAKE EQUAL tool replaces constant(s) in the program with an expression such that the
selected items are always numerically equal. The numeric traces of the selected numbers [12]
are rearranged into a system of algebraic equations over the constants in the program. Based
on the solution(s) to the equations (as determined by an external solver [21]), one of the
constants is removed and replaced with a mathematical expression using the other constants.
In the process, some of the constants may be pulled out into variables in a higher scope in
the program so all the constants are visible at the replaced expression.
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4.2.2  Relate

The RELATE tool finds an arithmetic expression (by guess-and-check) that defines one of the
selected constants in terms of the others. The redefined value must be similar to the original
literal value for the result to be shown to the programmer. Specifically, the inserted math
must evaluate to within 20% of the replaced constant’s original value and the distances to the
the other selected values must not change more than 20%. If both x and y coordinates were
selected, the x coordinates and y coordinates are each related separately. Additionally, except
for variable names, the z and y dimensions must use an identical arithmetic expression.
Like the MAKE EQUAL tool, RELATE operates in terms of the constants in the program.

4.2.3 Distance Features

Distances between selected points are exposed for selection, appearing as pink lines. A

selected distance is interpreted as \/ (w9 — 11)% + (y2 — y1)%, where x1,79,%1,y2 are each
numeric traces of the features.

4.3 GROUP, ABSTRACT, REPEAT

4.3.1 Group

The GROUP tool means simply “gather into list,” and so is useful for grouping more than
just shapes. A new list literal containing the selected items is placed in the program and
bound to a variable. Internally, this processes uses value holes—discussed in §5.3—to create
the new list expression containing all the selected items. Once the new list definition is
inserted an attempt is made to add that list to the output. Naively, adding the group to
the output duplicates all the shapes on the canvas, as they were already also individually
part of the output. To remove the old individual shapes from the output, for each item in
the new list that is a variable usage, in a guess-and-check fashion other uses of that variable
in the program are speculatively removed to find a removal that decreases the output size.
Variable usages that do not affect the output size are retained. The process is repeated until
as many individual shapes in the group have been removed from the output as possible.

4.8.2  List Widgets

List widgets, drawn as dotted borders on the canvas as shown near the end of §3.1.3, enable
the selection and renaming of lists, and thereby also enable the selection and renaming of
groups of shapes (i.e., shape lists). List widgets are generated on every evaluation step that
(a) produces a list and (b) is an expression in the program. To avoid cluttering the canvas,
each list widget is hidden until the programmer mouses over a value or a sub-value of a value
in the list.

27



4.8.8  Abstract

The ABSTRACT tool builds a function that returns the selected expression. All bindings
used only in the new function are recursively gathered into the function as local definitions,
although bindings with no free variables are not gathered in order to ensure there are free
variables left to abstract over. After gathering local definitions into the new function, free
variables in the function body become arguments to the function, with the exception of free
variables referring to functions (as determined by type inference).

Although the Juno [42] and Juno-2 [24] constraint-oriented programing systems rely
on non-standard execution semantics as discussed in §2.3, these two systems also feature a
workflow for creating user-defined procedures in a manner similar to the ABSTRACT workflow
above. In these systems, after constructing a design using a mix of text edits and mouse-
based drawing actions, the programmer may invoke a command to turn the current design
into a procedure parameterized by its input points. Like in SKETCH-N-SKETCH. the new
procedure becomes available as a drawing tool in the interface.

4.3.4 Merge

The MERGE tool performs a syntactic merge of the selected expressions, producing a shared
function. Differences between the expressions become arguments to the function created,
ant the original selected expressions are each replaced by a call to the new function with
appropriate arguments.

4.3.5 Repeat over Function Call

The REPEAT OVER FUNCTION CALL tool builds an abstraction f over some point in the
selected shape such that, given a point, f returns copy of the shape. To repeat that shape
across several points, a call map f (pointsFunc ...) is inserted into the program, where
pointsFunc is a standard library function or program function that returns a list of points.

4.3.6  Repeat over Existing List

The REPEAT OVER EXISTING LIST tool operates the same as REPEAT OVER FUNCTION
CALL, but repeats the shape across an existing point list in the program instead of over a
new function call.

4.3.7 Repeat by Indexed Merge

The REPEAT BY INDEXED MERGE tool, demonstrated by the Target example (§3.3), syntac-
tically merges the selected expressions with the differences replaced by PBE holes, detailed
in §5.4. A skeleton map (\i -> merged) (zeroTo n{0-3n}) is inserted into the program,
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where n a numeric literal of the number of items selected, and 3n is a literal three times
larger. The tool also offers an optional extra result that reverse the indices.

4.3.8 Fill PBE hole

When a program contains PBE holes produced by REPEAT BY INDEXED MERGE, the Out-
put Tools panel offers replacements for each PBE hole in the program, using a simple sketch-
based synthesis [55] technique described below in §5.4.

4.4 REFACTOR

4.4.1 Rename in Output

To aid program comprehension, most widgets on the canvas are labeled with an associated
program expression. If the associated expression is a variable usage or the left hand side of
a binding, the pattern for the binding (the right side of the binding) is displayed and may
be clicked to expose a text box to rename the variable(s) in the pattern.

4.4.2  Add / Remove / Reorder Argument

When a function call is focused, its arguments are shown with buttons next to each to remove
or reorder the argument. While in a focused call, selecting a shape or widget feature reveals
an option in the Output Tools Panel to add the feature as an argument to the function.

4.4.3 Reorder in List

The REORDER IN LIST tool finds the list literals in which the selected value participates
and offers four options to move the selected item within each list: the selected item may
be moved to the list head, to the list end, one space headwards, or one space endwards.
REORDER IN LIST may be used to affect the “Move to front,” “Move to back,” etc. shape
reordering actions of a traditional graphics editor (albeit backwards—the front of a shape
list is the shape drawn at the bottom).

4.4.4 Add to Output

The ADD TO OUTPUT tool attempts to add the selected item(s) to the output of the focused
function. ADD TO OUTPUT is a special case of shape drawing and reuses the same logic for
determining where the new variable usage should be placed.
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4.4.5 Select Termination Condition

Drawing a function inside itself introduces a recursive skeleton which includes a hole, dis-
played as ??terminationCondition, for the as-yet-undefined termination condition for the
recursion, as demonstrated in the Koch snowflake example (§3.1.3). The SELECT TERMI-
NATION CONDITION tool offers fillings for the conditional hole. Currently, only one filling
is supported: fixed depth termination. When chosen, a depth argument is added to the
function, the ??terminationCondition hole is replaced by depth < 2, and the depth is
decremented for any recursive calls.
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CHAPTER 5
IMPLEMENTATION

5.1 Introduction

SKETCH-N-SKETCH is an in-browser app written in the functional language Elm [15], with
exceptions and mutation added via a custom library.

Below, we discuss several of the key technical mechanisms that facilitate the operation
of the new tools: value provenance for deducing which program expressions to change, value
holes for snap-drawing, PBFE holes for the REPEAT BY INDEXED MERGE workflow, and
roles for determining how to draw programmer-defined functions.

5.2 Provenance

To affect program transformations, the Ul maps selections to output values (an SVG-specific
process, colored brown below). The provenance of these values is then interpreted as particu-
lar program expressions (a general-purpose process, in blue below) to which a transformation
is applied.

. ul Interpretation ]
Canvas Selection —» Value(s) » Expression(s)

Previous versions of SKETCH-N-SKETCH tagged numeric values with control-flow ignoring
traces of the mathematical operations performed on them, enabling live synchronization [12]
of numeric literals in the program as the user moved shapes on the canvas (as discussed in
§1.4). We inherit these numeric traces and use them for MAKE EQUAL, RELATE, and when
a drawing snap cannot be resolved by using or introducing a variable (as a last resort we
directly insert the math recorded by the trace). Numeric traces only record the provenance
of numeric values, however.

In this work, we extend SKETCH-N-SKETCH’s provenance tracking to meet two goals.
First, we would like to be able to trace all kinds of values—not just numbers—back to
relevant program expressions. Second, we would like to retain enough information about
execution that we can trace values back to relevant program expressions within a particular
editing context. The naive interpretation of a value may not be an expression within the
portion of the code the programmer is editing, so we would like to be able to find multiple
interpretations of a value in order to discover expressions within the portion of the code the
programmer cares about.

To meet these goals, we record the origin of values using a runtime tracing technique
we call “Based On” provenance. To find larger values that contain the value of interest, we
supplement “Based On” provenance with “Parents” provenance. Below, we introduce the
operation of these techniques and discuss how they are used by SKETCH-N-SKETCH’s tools.
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Figure 5.1: Core language for exposition of “Based On” provenance: a lambda calculus
extended with numbers, booleans, binary operators @, pairs, and if-then-else expressions.
During evaluation, all values are tagged with their generating expression and the values the
production is “Based On,” as detailed in Figure 5.2.

5.2.1 “Based On” provenance

When the programmer selects a shape or a widget on the canvas and invokes an action such
as DUPE or DELETE, SKETCH-N-SKETCH first needs to trace the selected value back to one
or more program expressions. After relevant program expressions have been identified, the
transformation will be applied to those expressions. Thus, the he main question the system
must answer is: “For a particular selected value, what expression(s) in the program does the
programmer most likely intend to modify?”

As a gross first-pass filter for discerning the programmer’s intention, we assume the
programmer would like to edit the user-visible program itself but not the provided standard
library of built-in code.l To further narrow the user’s selection to just an expression or
two in the program, we rely on trace information recorded during runtime and tagged onto
values. Below we discuss the details of the tagging process and the algorithm for translating
the tag on a selected value into expressions in the program.

In the evaluator, at every step of execution the value produced is tagged with two items:
(a) the expression being executed, and (b) the values immediately used to evaluate the ex-
pression, i.e., the values the result is based on. More formally, instead of standard big-step
semantics, we employ a tagging evaluation relation E F e {} v!, where t is a tag of the form
(e, {vtil, ..., vl }) which records the expression that produced the value as well as immediate
values used in that production. We call this “Based On” provenance.

1. Philosophically, the context for modification could be narrowed even further if the programmer has
focused a particular definition. Our examples have not required this yet. When the programmer focuses
their editing on a particular definition, canvas manipulations almost always affect changes within the focused
scope simply because the canvas only offers the products of that scope for manipulation.
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Figure 5.2: Evaluation rules showing the recording of “Based On” provenance, whereby each
value is tagged with the expression that produced the value, as well as the values immediately
used for that production. Each of those values is also tagged, and so on, except for constants
or abstractions which are not “Based On” anything prior. When both v and ¥ appear in a
rule, v is ¥ with its tag removed (i.e., there is an implicit premise 0 = v*).

Figure 5.2 presents “Based On” tagging for a core language (Figure 5.1), with v = o’
For brevity, the presentation splits evaluation into two mutually recursive relations: An
augmented big-step semantics £ + e | v, {01,...,0,} which produces a detagged value v
as well as the set of values {71, ...,0,} that v is immediately “Based On,” and the relation
E + e )} v that completes the tagging by gathering the immediate expression and the “Based
On” values into a tag (e, {01,...,0,}) that is placed onto the value.

The E F e | v,{01,...,0,} relation in Figure 5.2 highlights which immediate values a
resultant value is “Based On.” In particular, control flow is ignored. For example, the result
of an if-then-else expression is based on the value produced by the branch taken, but not
on the other branch nor on the conditional. Similarly, the result of a function application
is based only on the return value of the function call—the application is not based on the
function called, nor on its arguments. If needed, any arguments used to produce the result
can be found by transitively following the “Based On” values of the return value; similarly,
if the called function is needed, it can be discovered by inspecting the expressions of those
“Based On” values to see what function they appear in.
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In a related manner, plucking a value out of container (via fst() or snd()) does not
record that the plucked value is “Based On” the container. Selecting, e.g., the left edge of a
rectangle should not be interpreted as selecting the whole rectangle itself. Conversely, select-
ing the whole rectangle could reasonably be interpreted as referring to all of the rectangle’s
constituent values, thus constructing a container does record that the container is “Based
On” its constituents (cf. the pair construction rule in Figure 5.2).

Since the “Based On” provenance of a value may be followed transitively, it can reveal
a large number of program expressions involved in the production of the final value. The
programmer is likely only interested in one or two of these expressions. In the next section,
we discuss how we take a selected value and narrow down its “Based On” provenance to only
a small set of expressions in the program.

5.2.2 Interpreting “Based On” provenance

“Based On” provenance records an answer the question,“For a particular value, what other
values at other execution steps were used to produce it?” Most of the tools are interested in
expressions rather than values, so will we now detail how we use the “Based On” provenance
to answer our main query: “For a particular value, what expression(s) in the program does
it most likely refer to?”

After the user selects a value on the canvas, the simplest approach to selecting a relevant
expression is to look at the tag on the selected value and take the single expression e in
the tag—the expression that immediately produced that value—and consider that single
expression e to be the interpretation of the canvas selection.

In practice, this naive approach usually finds the expression the programmer intended.
Nevertheless, SKETCH-N-SKETCH occasionally needs to discover expressions earlier in exe-
cution, if, e.g., the immediate expression is actually in the standard library and we instead
need an expression in the program. Algorithm 1 shows the general schema for discovering
interpretations further back in the execution history. Informally, a value may be interpreted
as either (a) the single expression e that immediately produce the value, or (b) any concate-
nation of an interpretation each for all “Based On” values v1,...,70,. For example, consider
the following program:

let pt = (10, 20) in

pt
Assuming let desugars to function application, the final value produced is (10, 20). The
final value (10, 20) has three possible interpretations according to Algorithm 1: the final
variable usage {pt}, the pair introduction { (10, 20)}, or the two constants {10, 20}. Note
that each interpretation is a set of expressions. The expressions 10 and 20 together constitute
all the parts of the pair value (10, 20), but simply 10 or 20 alone would not.

While Algorithm 1 is the basic mechanism for finding expressions based on a selected
value, SKETCH-N-SKETCH does not follow the algorithm exactly. First, the programmer
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Algorithm 1 Ways to interpret a value as expressions using “Based On” provenance. Re-
turns multiple interpretations. Each interpretation is a set of expressions that together can
be considered to “constitute” the value of interest. At a high level, the algorithm defines that
a value may be interpreted as either the immediate expression e that produced the value
or as a conglomerate of interpretations of the values v1,...,7, the value was immediately
based on. [] below is set cartesian product.

function INTERPRETATIONS (v(&{V1-vn})) > Returns sets of expressions.
n
vsInterpCombos < || INTERPRETATIONS(;)
1=1

earlierInterps < { U interp

interpEcombo

combo € vsl nterp(]ombos}

return {{e}} U earlierInterps

end function

is always working in some context and therefore expects their selections to only be inter-
preted inside that current context. In practice, this context is their visible program and
the provided library is considered out-of-context. Consequently, SKETCH-N-SKETCH limits
interpretations to expressions in the program. This in-context interpretation is accomplished
by Algorithm 2, which especially curious readers may study (simply filtering the results of
Algorithm 1 turns out to be undesirable). Second, discovering all possible interpretations is
subject to combinatorial blow up. To avoid exponential blow up, we assume that expressions
occurring later in execution are more likely to be the referent of the user’s selection because
later expressions are closer in form to the selected value. Consequently, in practice, the
various tools often use a specialized variant of Algorithm 2 that returns at most one inter-
pretation, the interpretation latest in execution. Finally, alongside these two considerations,
the vagaries of particular tools call for other constraints on the interpretation. Below, we
describe three such constraints and examples of where each constraint is used.

Single Expressions. Although a selected value may be interpreted as a set of expressions,
many tools can only operate on a single expression. Consequently, SKETCH-N-SKETCH often
employs a variant of Algorithm 2 specialized to find interpretations that consist only of a
single expression. For example, the REORDER IN LIST tool searches for an interpretation
that is a single expression, more specifically a single expression that occurs inside a list
literal. Similarly, to find an expression to duplicate, the DUPE tool searches for a single
expression that also is not a variable usage.
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Algorithm 2 Extension of Algorithm 1 to interpret a value inside an expression context
specified by a predicate INCONTEXT?(e). In practice, the context is usually the user-specified
program, with the standard library considered out-of-context. Simple post-processing of Al-
gorithm 1 would not produce desirable results: in cases where execution leaves and re-enters
the context, an interpretation from Algorithm 1 might contain out-of-context expressions
that should not be discarded but instead replaced by in-context expressions from further
back in execution. The algorithm below handles that scenario as desired. Additionally, if
any “Based On” v; cannot be interpreted in context—i.e., was produced entirely by out-
of-context expressions—that v; is discard. Otherwise, the cartesian product would collapse
to the empty set. For example, consider the simple user-specified program f 2 calling an
out-of-context standard library function f x = x + 1. Without removing empty sets from
vsInterps below, the program’s final value 3 can only be interpreted as {f 2}. Instead, the
algorithm will ignore that 1 cannot be interpreted in context and will follow x back into the
program to offer the interpretation {2} in addition to the interpretation {f 2}.

function CONTEXTINTERPS(v!{"1-nh INCONTEXT?)
vsInterps < {CONTEXTINTERPS(@,INCONTEXT?) ’ v; € {01, ... ,17n}}

vsInterps’ {interps ‘ interps € vslnterps, interps # {}}

n
vsInterpCombos H vsInterps’
=1

earlier Interps <— { U nterp

interpEcombo

combo € vsInterpCombos }

if INCONTEXT?(e) then

return {{e}} U earlierInterps
else
return earlierInterps
end if
end function
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Unique, Late Expressions. If the programmer selects a shape and hits DELETE, they
are asking to delete the selected shape but, implicitly, all non-selected shapes should remain
intact. Since a single expression may be involved in the production of multiple canvas shapes,
e.g., a function call in a map expression, it is not appropriate to delete such an expression
as such a deletion may inadvertently remove non-selected shapes. To avoid this scenario,
the DELETE tool searches for interpretations that are unique to the shape selected, that is,
interpretations whose expressions do not appear in the transitive “Based On” provenance of
any of the non-selected shapes. Additionally, as later execution products are closer in form to
the selected value, the tool uses only the unique interpretation occurring latest in execution.
For each expression in this interpretation, DELETE successively attempts to remove that

expression from the program.

All Expressions. Instead of narrowing the interpretation to a single expression or two,
certain tools instead look for all expressions reachable by transitively following the “Based
On” values of the selected value. For example, the MERGE tool internally utilizes a clone
detector which, even if invoked on an entire program, would only find a handful of possible
code clones. Consequently, MERGE first finds all expressions reachable by the “Based On”
provenance of the selected values and then instructs the clone detector to search for clones
within that reachable expression set. Similarly, the ADD ARGUMENT tool—available when
a function is focused for editing and some item on the canvas has been selected—searches for
all expressions within the focused function that participated in the production of the selected
value on the canvas. Each such expression is offered to become an argument to the function.
For example, if the programmer selects the right edge of a rectangle, ADD ARGUMENT will
separately offer the rectangle x coordinate and the rectangle width each as a possible new
function argument.

“Based On” provenance is SKETCH-N-SKETCH’s primary means to interpret output selec-
tions, but is supplemented by “Parents” provenance, as described below.

5.2.83 “Parents” provenance

Recall from Figure 5.2 that containers are “Based On” their constituent values, but not vis
versa. The pair value (10, 20) is based on the value 10 and the value 20, but neither 10
nor 20 is based on the pair. When a programmer selects a container they may be referring
to all its constituent values, but if they select a single constituent value it is unlikely they
mean the entire container.

If, instead, the programmer selects all the constituent values of a container, then perhaps
they are trying to refer to the container itself. In the vector graphics setting, this scenario
most commonly occurs with points: if both the x and y coordinates of a point are selected,
very likely the entire pair (x,y) should be considered selected. “Based On” provenance,
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unfortunately, does not allow the discovery of containers from constituents—given x and v,
we cannot find where they are used as a pair value (z,y).

To find containers from constituents, we tag all contained values with what we call
“Parents” provenance. “Parents” provenance operates as follows: if a step of evaluation
results in a value that contains other values, all contained values (and, recursively, their
contained values) are mutably tagged as having been carried by this container value. Thus
any value can inspect its “Parents” provenance tagging to see what other values it has been
contained in.

As suggested above, the “Parents” provenance is used to affect changes to (z,y) pairs
when both the x and y coordinates are selected—indeed SKETCH-N-SKETCH does not other-
wise allow pair selection because only primitive coordinates are selectable in its UI. “Parents”
provenance is also used when resolving snaps: if the value to snap to is not in the execution
environment, but there is a variable holding a container that contains the needed value, then
the needed value may be made available by inserting a binding that pattern matches the
needed value out of the container variable.

Although “Parents” provenance as described above works in practice, it will likely be re-
placed in a future implementation of SKETCH-N-SKETCH as it suffers from a theoretical flaw.
Given a value, “Parents” provenance is able to answer the question, “What container values
carried this value?” But more often, we instead want to answer, “What container values
carried this value to the canvas?” The user wants to manipulate expressions in the thread of
execution that resulted in the displayed canvas, not in irrelevant side branches of execution
that just happened to use some of the same values. Unfortunately, the “Parents” provenance
mechanism described above cannot distinguish between containers in the primary execution
path and containers in other execution paths but holding the same values. In practice, we
have not run into trouble with “Parents” provenance—these irrelevant paths seem to be rare
in practice, at least in our examples—but future versions of SKETCH-N-SKETCH may record
containment using a different mechanism. One possible solution may be to explicitly record
pattern matches in the execution traces.

5.2.4 Ezxpression IDs

Within the core language of Figure 5.1 it is not possible to distinguish between structurally
identical expressions that occur in different code locations—if a variable x occurs in the
standard library, and the programmer also uses a variable named x in a different scope, if
either of those x’s are executed, the e in the resulting value’s “Based On” tag will simply be
a bare x and it is impossible to know which x in the program or standard library is intended.
Consequently, in practice the SKETCH-N-SKETCH parser tags all expressions with unique
IDs. These expression IDs, rather than structural equality, are used to determine program
locations. For example, the INCONTEXT? predicate given to Algorithm 2 examines the
expression ID to determine if the expression is within the editing scope.
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As a further consideration, although it is generally impossible to preserve expression IDs
between successive programmer text-edits to a program—the programmer could, e.g., paste
in an entirely different program—some attempt is however made to preserve expression IDs
during program transformations in order to facilitate composite transformations. A single
invocation from the programmer may internally run a series of transformations. For example,
the GROUP tool not only adds a new definition to the program and adds a new variable to the
shape list, but also successively runs DELETE on each of the individual shapes to remove the
prior individual shapes from the output. Many of these sorts of compositions require certain
expression ID references to remain valid across multiple transforms. AST transformations
are structural edits rather than text edits, so expression ID preservation is usually automatic.
But if new expressions inserted by the transform need to be referenced by later transforms in
the composition, the transform must assign new expression IDs to the inserted expressions.
In this scenario, for transform authors, SKETCH-N-SKETCH provides a convenience function
that walks the AST and reassigns expression IDs only to new or duplicated expressions—all
expression IDs that occur exactly once in the AST are preserved.

5.2.5 Approaches to Provenance in Other Work

Live programming environments attempt to continuously inform the programmer about their
program’s behavior even while the programmer makes edits, tightening the feedback loop.
Though few live programming systems also attempt to make the output manipulable as
we do here, the live programming system may attempt to aid program comprehension by
allowing the programmer to ask where a particular piece of the output came from. We
mention two recent examples. The live game programming environment JSDARE [48] keeps
track of execution steps and creates a map from pixels on the canvas back to expressions in
the program such that hovering over items on the canvas will highlight a relevant block of
code. Similarly, the TouchDevelop live programming environment for creating Uls [8] allows
the programmer to touch a Ul box in the output to focus the code expression that emitted
the UI box. Neither system allows direct manipulation of the output, nor do they present
provenance tracking as part of the core semantics of the language.

Although provenance tracking has a long history in the domain of data management,
several works have explored provenance tracking in the context of general-purpose program-
ming languages. Cheney et al. [11] propose using entire operational derivation trees to
record provenance, as this complete record of the computation can be viewed as the “most
precise” [11] form of provenance possible. Using derivation trees for a non-higher-order im-
perative core language they demonstrate extracting where-provenance (that is, finding values
copied from input to output [7]) and performing incremental re-computation.

Acar et al. [2] propose a generic annotation framework that allows various forms of
provenance to be projected from rich traces recorded during the runtime of a core language,
Transparent ML (TML). Common provenance schemes can be deduced by post-processing
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the execution trace. TML traces, also utilized in [46], are nearly identical in structure to
core language expressions but additionally record control flow, namely, the function body on
function application and the branch taken on case statements. Compared to storing the entire
derivation trees, TML traces discard intermediate environments and intermediate values. If
provided with a final value, however, the traces are complete enough to allow computation
to be rewound backward to recover intermediate values and partial environments. This
unevaluation technique is used in Perera et al. [46] to build program slices and a variant is
used in Acar et al. [2] for determining disclosure and obfuscation security properties.

The goal of our provenance techniques is to identify a program expression or small set
of expressions most relevant to some selected sub-value of the output. The problem of pro-
gram slicing is similar: given some criterion, produce a subset (a “slice”) of the original
program that preserves the criterion. Program slicing has a long history, with most ap-
proaches applied to imperative or object-oriented languages [66]. Originally envisioned as
a static analysis technique [64], Korel and Laski [30] later proposed slicing a program with
respect to a single input to produce smaller, more informative slices—a technique called
dynamic program slicing. For functional languages, dynamic slicing with respect to some
sub-value of the output is elegantly handled by the approach of Perera et al. [46] (later ex-
tended to also handle imperative constructs [50]). Leveraging a semantics that uses holes to
represent ignored portions of the program and output, Perera et al. [46] are able to produce
executable least slices for a given output value—that is, a smallest program that may still
be executed and produce the desired sub-value of the output. Executable program slices
must preserve significant portions of the program to remain runnable and thus are too large
for our purposes—in most cases, we need to isolate a single expression before invoking a
transform. To focus in on the most relevant portions of a slice, Perera et al. [46] also pro-
pose differential slices. By producing two program slices, one ignoring and one including
the sub-value of interest, the difference between the two program slices may be examined to
find the statements most relevant to sub-value of interest. Even with the small differential
slice, the differential slice is still a set that does not given any indication of which expression
in the set is most important. For this reason, the tracing mechanisms used to produce the
slices (TML in the case of Perera et al. [46]) are more related to our purposes than programs
slices themselves, as the traces retain execution order information which indicates the most
relevant expression(s) (those latest in execution).

Similar to TML, redex trails [58] trace computation by storing pointers to prior reduc-
tions. Unlike TML, redex trails do not explicitly model pattern matching and thus add
special indirection nodes into the trace graph in order to trace how values are taken out of
containers. Instead, we find containers using a mutable tagging scheme (“Parents” prove-
nance described above in §5.2.3). The biggest difference between our provenance tracking
and both redux trails and TML, however, is that at each execution step we consider the
immediately prior values to be a set rather than recording each value’s role in each reduc-
tion. This limits the amount of information we can glean about the execution from the
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“Based On” traces, and for this reason future versions of SKETCH-N-SKETCH may switch to
a strictly more informative tracing scheme like TML.

5.3 Value Holes

Drawing a new shape requires inserting a function call into the program. But, if any snaps
were used in the drawing interaction, the inserted function will need to rely on existing
expressions and may require reorganizing the program somewhat to bring needed values into
scope. To elegantly separate the concern of where to place the function call from the concern
of transforming the program to enforce snaps, we employ special expressions dubbed value
holes. A value hole is a temporary expression that contains a value. To enforce a snap,
the values to snap to are initially inserted into the program AST as value holes. All value
holes are then resolved to traditional expressions before the new program is displayed to the
programimer.

For example, if the programmer draws a rectangle with its top-left corner snapped to an
existing point, the rectangle is temporarily inserted to the internal AST as. ..

rectl = rect 0 [??7vx, 77vy] 150 150

... where ??7vx is a value hole containing the x value to snap to, and ?7vy is a value hole
containing the y value to snap to. A hole resolution phase examines the provenance of the
x and y values in the holes to find a variable to use instead, or to bring a needed program
expression into scope as a variable.

If a value hole is encountered during evaluation, the hole simply evaluates to its contained
value. This evaluation rule is not just a gimmick: while the programmer is snap-drawing a
new shape, the rule allows us to continuously redraw a preview of the function call’s result
on the canvas without having to perform the (potentially expensive) hole resolution.

Value holes are an elegant mechanism for combining template code with output-directed
constraints. Thus, for example, the GROUP tool also employs value holes to trivially create
a list containing the selected values.

5.4 Programming by Example Holes

To affect shape repetition through a programming by demonstration workflow, the REPEAT
BY INDEXED MERGE tool utilizes another type of expression hole we dub programming-
by-example (PBE) holes. A PBE hole, written ?7(1 => el, 2 => e2, ..., n => en),
contains a number of example expressions which represent what the hole is expected to
evaluate to each successive time the hole expression is evaluated during a program run.
The evaluator thus evaluates the hole accordingly, executing the next example expression on
each successive encounter with the hole. If a PBE hole is encountered too many times during
evaluation—i.e., all its example expressions have already been used—the program crashes.
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To enable filling of the hole by program synthesis, the evaluator additionally logs the
execution environments at the hole on each successive encounter. The PBE hole filling al-
gorithm examines these environments to see what variables have changed and what their
values are. This information is used to offer suggestions to fill (i.e., replace) the PBE
hole expression. The hole fillings are currently generated based on a short list of built-
in simple expression sketches [55] (i.e., template expressions), each of which is either a
simple mathematical skeleton (e.g., var + num), or a simple if-then-else skeleton (e.g.,
if var == valFromVarDomain then exampleVall else exampleVal2). The hole filler re-
places the various terms in the sketch based on the examples in the PBE hole, perhaps dis-
patching the external mathematical solver [21], and offers the finished expression if all the
numbers in the evaluated expression value are within 20% of their original values in each of
the example execution environments. In order for this nearness requirement to be evaluated,
PBE hole filling only operates if all examples return numbers or lists of numbers.

In this work, PBE holes are only generated by the REPEAT BY INDEXED MERGE tool.
In future work, we imagine PBE holes might also be useful to facilitate an interaction that
allows a repetitious design to be modified after-the-fact, to, e.g., change the color of one
shape in a series. PBE holes might also be useful in an interactive programming by example
setting, as the holes themselves are very similar to structures used in the internal state of a
traditional programming by example program synthesizer such as Myth [44].

Unlike value holes, PBE holes may appear in the programmer-visible code. But, like the
termination condition hole, PBE holes are expected to eventually be filled.

5.5 Roles

To draw programmer-defined functions on the canvas, SKETCH-N-SKETCH needs to know
which arguments are points, widths, or heights, and also needs to provide reasonable defaults
for the remaining arguments. All number-number pairs are considered points and so points
can be readily identified by type inference, but width, height, stroke width, etc. are all just
numbers. To infer widths and heights we augment the type system to infer roles in addition
to primitive types. Each type in SKETCH-N-SKETCH may be tagged with a set of named
roles, which are propagated during unification. Roles are introduced in two ways: by the use
of named type aliases in type annotations, or by various hard-coded structural rules. The
standard library functions are already annotated with roles (via type aliases), so the use of
such functions propagates role information into the program. The structural rules include
our definition of point—a number-number pair is tagged with the Point role, its left number
with the X role, its right with the Y role—as well as special propagation rules helpful when
using offsets—e.g., if an untagged number is added to an X coordinate, tag that number as
a HorizontalDistance.

Although similar to dimension types for notating units of measures on numbers [29], roles
are different in two key ways: roles need not apply only to numbers, and, as implemented,
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roles play no part in checking program correctness. Dimension types will reject a program
that attempts to add centimeters to inches, but roles are side information not used for type
checking.

A scheme similar to roles, called brands, is used in APX [40] to offer semantically mean-
ingful Uls for manipulating program expressions. Since APX also targets shape drawing
programs, many of APX’s brands are the same as SKETCH-N-SKETCH’s roles: X and Y for
coordinates, Color for colors, and so on. APX brands are realized using a multiple inher-
itance scheme with inference based on duck typing. We instead implement roles as side
information on each type instead of as object oriented mixins. Also unlike brands, we apply
usage rules—e.g., a number added to an X value must be a HorizontalDistance—to infer
roles in more cases.
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CHAPTER 6
EVALUATION

To evaluate our approach, we have implemented a total of sixteen programs without text-
based editing. Although a distinctive feature of output-directed programming is the ability
to edit the text-based code at any time during the output-based construction, the flexibil-
ity of text-based programming is already well established. We therefore limit ourselves to
constructing programs using only canvas-based interactions in order to to emphasize the
expressive power of the novel set of output-directed tooling we present. Our main argument
for the value of our contribution is an existence proof: SKETCH-N-SKETCH can create these
programs without text edits.

The output of each of the sixteen examples is shown in Figure 6.1. We also present
program sizes (measured in source lines of code and math operations) to provide a rough
indication of the scope of programs our system is able to handle.

The example designs are taken from three main sources:

1. Six of our examples (underlined in Figure 6.1) are from the PBD test suite proposed
in Watch What I Do: Programming by Demonstration [1]. The WWID: PBD suite is
diverse: 15 of its 32 tasks may be interpreted as parametric drawings. Of those 15, our
work is able to complete 4 and partially complete another 2.

2. We take 5 tasks from other drawing literature [4, 10, 12].
3. We additionally implement 5 novel tasks.

The Koch fractal presented previously (§3.1) was a task in the Watch What I Do: Pro-
gramming by Demonstration benchmark suite [1]. For the other five examples taken from
the WWID: PBD benchmark suite, we give a brief discussion of their construction below.

6.1 Precision Floor Plan (Figure 6.1d)

The goal of this example is to draw a “table” rectangle exactly over the left third of a “floor”
rectangle. We draw the floor rectangle, snap the top corner when we draw the “tabl’e’
rectangle, equalize the heights, and then invoke RELATE on the widths. (9 LOC including 3
math operations.)

6.2 Mondrian Arch (Figure 6.1e)

The goal in this task is to create an abstraction that draws an arch consisting of three rect-
angles. This arch task was used to present the Mondrian graphical editor’s [34] programming
by demonstration workflow.
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#-o-w‘-l'l

(a) Koch Snowflake (b) Tree Branch (c) Target (d) Precision Floor Plan (e) Mondrian Arch?
31 LOC, 22 MO 31LOC, 9 MO 8 LOC, 3 MO 9 LOC, 3 MO 15 LOC, 4 MO

(f) Balance Scales (g) Box Volume (h) Xs* (i) Battery* (j) Ladder (k) Logo (via Three Tris)?
35L0C, 21 MO 76 LOC, 42 MO 48 LOC, 14 MO 13 LOC, 5 MO 18 LOC, 3 MO 37 LOC, 11 MO
(1) N Boxes (m) Ferris Wheel (n) Pencil Tip (o) Arrows? (p) Rails
7 LOC, 2 MO 25 LOC, 0 MO 25LOC, 4 MO 18 LOC, 0 MO 25LOC, 7 MO

Figure 6.1: Examples programs created using only output-directed manipulations in
SKETCH-N-SKETCH, with source lines of code (LOC) and number of math operations in
the code (MO). A = Final design is abstracted (i.e., available as a drawable function).
underline = Task from WWID: PDB test suite (dashed = only partially completed) [1].
Other sources: Battery is from Bernstein and Li [4], Ladder from Cheema et al. [10], Logo
(via Three Tris), N Bozes, and Ferris Wheel from Chugh et al. [12].

In this work, to end with the ideal parameterization of [left, top] width height
stoneWidth, we start by drawing a point and offset downward to serve as the top left point
and the overall height. If we permit ourselves to overlap the rectangles (as in the original
presentation in Mondrian), the offset can be omitted and instead the height of a pillar rect-
angle serves as the overall height—but we consider overlapping shapes to be inelegant in
this case as it does not match the physical reality of, e.g., Stonehenge and thus forego this
method. The remainder of the design is constructed by repeatedly utilizing MAKE EQUAL
once all three rectangles have been drawn. We take advantage of the multiple resolution
options provided by each MAKE EQUAL invocation to, for example, ensure that the right
pillar is snapped to the right edge by deriving the right pillar’s & position—rather than its
width—in terms of other pre-existing parameters. Just before the GROUP and ABSTRACT
operations to finish the design, to make the overall height an argument for the abstrac-
tion we select the distance between the top left point of the top stone and the bottom left
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point of the left pillar (recall that distance features are accessed by selecting the two points
first and then the distance) and equalize that vertical distance with the offset amount we
began the design with. MAKE EQUAL offers several options to enforce the constraint, we
choose the option that preserves stoneWidth as a parameter and computes pillarHeight
as height - stoneWidth. The offset may then be removed as the top + height operation
that generated the offset is not needed as a value anywhere in the program—the operation
was only transiently necessary to expose a widget to select height. A “Clean Up” button
removes this dead code. From there the design is finished by grouping the three rectan-
gles and abstracting the resulting group. If the arguments are in the wrong order so that
drawing new instances of the function are awkward (e.g. the mouse’s x movement controls
stoneWidth instead of width because stoneWidth is before width in the argument list) then
the arguments may be reordered by focusing the function call and utilizing the REORDER
ARGUMENT buttons. The final program consists of 15 LOC and 4 math operations.

6.3 Balance Scales (Figure 6.1f)

In this example, the goal is to constrain the drawing so the hanging trays always stay attached
to the arms as the arms rotate on the fulecrum. We want each arm to rotate independently
but stay equal in length to each other. This is accomplished by placing points for the
fulcrum and two arm ends and then use the distance features to equalize the distance of the
two arm ends from the fulcrum. In the rest of the design, the key to ending with a nice
parameterization is to first start by drawing a point and offset downward and then to build
a tray and its two wires around this point and offset. The start point of the offset is where
the wires will attach to the balance arm, and the offset end point is the center of the tray.
GROUP (with dependencies gathered), DUPLICATE, and MERGE of the tray+wires creates a
function abstracted over the attachment point of the tray (to optionally make the function
drawable, the offset amount, that is, the tray hanging distance, must then be added as an
additional argument). The rest of the design proceeds apace from there, for a final program
of 35 LOC with 21 math operations.

6.4 Box Volume (Figure 6.1g)

Imagining a scenario where a student wants to explore how to maximize the volume of a
box constructed by cutting out the corners from a flat square and folding up the sides,
this design displays a top-down view of the cutout template synchronized with a pseudo-3D
view of the resulting folded box. The main parameter is the side length of the square cut
from each corner, i.e., the height of the resulting folded box. The top-down view may be
constructed by first laying out offsets for the overall width and height of the material and
then drawing a number of offsets around the corners to lay out a skeleton of points to which
a polygon will be attached. Amount snapping of the offsets while drawing makes equalizing
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the appropriate lengths trivial. In this construction, the width of the base of the folded box
(i.e., widthyppq — 2 widtheyt) is not immediately available on the drawing but will be needed
to make the perspective view. To expose this distance, we draw an offset in the appropriate
location on the top down view, and another in an equivalent location to introduce a variable
for the distance. The end points of the offsets do not snap during drawing (only the amount),
but the end point can be snapped after the fact with MAKE EQUAL, thus causing the amount
to be derived as widthyypq — 2 - widtheyt.

Once in place, we can construct the perspective view. ..
The back plate of the box can be laid out with offsets, snap- cutw cutw
ping their amounts to the existing widthq,; and just-created baseW
offset amount of widthy g — 2 - widtheyt. To construct the Q O
diagonal, we utilize the onLine library function which, given
two points and a ratio, produces a point on the segment
between the points with the ratio controlling its relative O
distance from the input points (e.g., a ratio of 0.5 produces

©)

box to make a diagonal with a point on it. To make that point’s distance from the corner

the midpoint). We draw onLine from the back corner of the

equal to the box base length, we invoke MAKE EQUAL on the appropriate distances (shown
selected in green in the inset). MAKE EQUAL will cause the ratio to be calculated from the
appropriate math to so that the point on the diagonal is always widthiyq — 2 - widtheyt
(that is, widthy,se) from the corner.

The rest of the design skeleton can be constructed with offsets, with a single four-sided
polygon attached to each face. Thus drawn, resizing any of the widthe,; offsets changes
both the top down template view and the shape of the folded box. This is as far as we can
proceeding, resulting in a program of 76 LOC with 42 math operations.

To help the student know when the volume is maximized, a complete design should also
provide textual display of the box volume and cutout length. We have not focused on any
textual output and thus are not yet able to accommodate this part of the task.

6.5 Xs (WWID: PBD p. 591 David Maulsby)

Originally presented as a color change operation, here we interpret the Xs design as a param-
eterized abstraction that should draw an X with a specified number of squares on the arms.
In our realization of the design, each arm is based on a separate call to the nPointsSepBy
library function which takes a base point, a horizontal separation between points, a vertical
separation between points, a number of points, and returns a list of points according to the
parameters. To equalize the separation amounts to the square widths, we must expose offset
widgets for math operations conducted outside the written program in the standard library.
By default, since the calculations in the standard library are not visible in the code box,
execution steps in the standard library do not produce widgets lest these widgets confuse the
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programmer and clutter the canvas. In the “View” menu, the “Show Offset Widgets from
Prelude” enables these offsets, which, in our case, allows us to select the amount of horizontal
and vertical separation between the repeated points. Depending on the direction of the arm,
we want each of the separations to be either widthsquare or —widthsquare. For the those that
should be widthsquare, we can just invoke MAKE EQUAL. For the —widthsgyare separations,
we must lay out the offset at roughly the right distance, invoke RELATE, and choose the
0 — widthsquare option (our language currently lacks a negation operator). Unlike MAKE
EQUAL, RELATE must be used separately on each separation offset with a widthsquare, as

¢

its semantics are to “relate one selected item in terms of all others” With the repetitions
laid out, rectByCenter instances may be drawn and then attached to the points. From here
we may GROUP all the parts of the X together into a single definition (this requires first
grouping the center rectangle with just itself to produce a singleton list, so it can then be
concated with the arm lists).

We now invoke the ABSTRACT tool to make a function that will draw an X. The GROUP
and ABSTRACT tools deliberately do not gather helper functions into the new definitions they
create, which in this design, unfortunately, leaves several instances of widthsguare outside
the control of the abstraction. One solution to this problem might be to optionally offer
transform results that do gather helper functions; but as of this writing such a fix remains
unimplemented and we must be content with only partially implementing the task. (48 LOC

with 14 math operations).

6.6 Tackling the Remaining WWID: PBD Tasks

The remaining nine tasks in the WWID: PBD test suite are diverse. No single feature would
help with any more than two or three of the tasks. Our most prominent missing feature
is the ability to draw text boxes, with other elements placed relative to the text size. Be-
yond this, several examples require a wide variety of list operations. SKETCH-N-SKETCH
would also need the ability to reason about intersections of lines with shape edges, to specify
overlapping and containment-based constraints, and to solve for different kinds of such con-
straints simultaneously. Finally, one example would require SKETCH-N-SKETCH to create
if-then-else branches outside of a recursive or hole-filling setting.

48



CHAPTER 7
DISCUSSION

We presented new techniques for output-directed programming in the SVG programming
environment SKETCH-N-SKETCH, and we used the new system to construct a variety of non-
trivial programs entirely through direct manipulation. Our system lacks many features—
such as rotation attributes and curved path tools—that would be required in order for
SKETCH-N-SKETCH to be a practical tool for creating parameterized drawings. We expect
that many of these features would work in much the same way as the techniques presented.

Our goal has not, however, been to create the ideal system for parameterized drawings.
Instead, we consider this particular application domain as a laboratory for developing output-
directed programming capabilities for a variety of future programming settings. In this
chapter, we reflect on lessons learned so far, and offer avenues for further research.

7.1 Lessons Learned

As just mentioned, the version of SKETCH-N-SKETCH we present is not intended to be a
serious drawing tool. Instead, we view SKETCH-N-SKETCH as a workbench for exploring
output-directed programming. What has this work revealed?

7.1.1 Is it working?

We start our discussion by addressing an obvious question—does the output-directed pro-
gramming system described here work? If SKETCH-N-SKETCH isn’t a serious drawing tool,
what is its valuable research contribution?

This work is an existence proof that meaningful, human-readable programs can be pro-
duced entirely by output-directed interactions, at least for a single domain. This work only
explores a single domain, but as mentioned at the beginning of §5.2, the core technical mech-
anisms in SKETCH-N-SKETCH—tagging values with provenance, interpreting the provenance
for selected values, and emitting widgets during execution to expose intermediate values—are
general-purpose and apply to any domain.

7.1.2 Intermediates

We believe that in order for output-directed programming to scale up to larger programs,
more than just the final result of execution must be exposed for manipulation. Intermediate
execution products, and some indication of how they were computed, must be displayed.
The display of intermediates falls within the vision of live programming. For example,
Seymour [28] shows intermediate code products to the side of each line of code. Our proposal
in this work is to make these intermediate results manipulable. For the SVG domain, we
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make intermediate results manipulable by exposing various automatically generated widgets
on the canvas—point, offset, list, and call widgets. Point and offset widgets are graphics-
specific, but, other than the computation of where they should be displayed on the canvas,
list and call widgets are general-purpose.

Should an output-directed programming system attempt to visualize the entire execu-
tion of the program? The intermediates we have chosen to display still only represent
a fraction of the program’s execution. If the goal were to visualize the whole program,
SKETCH-N-SKETCH could represent every code expression on the canvas, a la a visual pro-
gramming language, or even display an entire execution trace to expose even more detail
about the running of the program. More detailed display, however, requires more visual
space, and thereby comes at the cost of increased visual noise. In the limit, display of all inter-
mediates is infeasible: a 3.0 Ghz four-wide superscalar processor can produce 12,000,000,000
intermediates per second—they cannot all be displayed! Where to fall on this trade-off be-
tween more thorough computation visualization versus more economical use of canvas space
is an open question.

Our final observation concerning intermediates regards our goal of producing human-
readable programs. Names aid human program comprehension [33]. Thus, we believe the
ability to RENAME IN OUTPUT is a boon for creating understandable programs.

7.1.3 Focused Contexts

When working on larger programs, programmers consider only small pieces of the whole
program at a time. In light of this observation, we explored the ability to focus editing on
a specific definition (usually a function), limiting display on the canvas to the output of the
focused definition and the widgets produced therein.

In this work, focusing the editing context enables three interactions. First, it enables
contextual drawing, that is, the ability to add a shape or widget inside an existing definition
rather than at the top level of the program. Second, it enables two interactions that facilitate
specification of recursive functions: the ability to draw a function in itself (as in [52]) and
the ability to selectively edit the base or the recursive case by shifting editing focus between
them (by selecting which call in the program is chosen as the contextual example for the
focused function). Third, function arguments are hidden until a function is focused, allowing
their display to be omitted until needed.

Beyond these interactions, we speculate that focusing the editing context might offer
cognitive benefits to the programmer by decluttering the canvas. But the examples we have
explored so far are too small to gain any intuition as to whether this hypothesis is true.
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7.1.4  Programing by Demonstration or by Direct Manipulation?

A programming by demonstration (PBD) workflow is characterized by the programmer show-
ing the editor what the programmer wishes to happen, and then the editor attempts to infer
the programmer’s intent. SKETCH-N-SKETCH’s workflow for the RELATE tool and REPEAT
BY INDEXED MERGE clearly fall into this PBD paradigm because these tools attempt to
infer the programmer’s intent based on where the programmer has placed the shapes on the
canvas. Other than these two tools, however, we have largely opted for a more direct select
and tell, rather than show and infer, workflow. The select and tell interaction is more simi-
lar to traditional direct manipulation tools, but this distinction between direct manipulation
and programming by demonstration may not be clearcut in SKETCH-N-SKETCH. PBD’s in-
ference step is characteristically ambiguous. Often a PBD system must ask the programmer
for clarification. So too must almost all of SKETCH-N-SKETCH’s transforms—we ask the
programmer to choose one of many transform results. For this reason, although we have
attempted to create a set of tools that operate in small, direct, mostly unambiguous steps—
with the expectation that small transformation steps will generalize to other domains—it
may be appropriate to classify SKETCH-N-SKETCH’s approach as both direct manipulation
and programming by demonstration.

7.1.5  Could you hide the code?

Although in this work we constrained ourselves to only perform manipulations on the canvas,
it is not our future goal to hide the code box and only display the canvas during program
construction. We do not expect that output-based manipulations will be optimal for all
program transformation tasks and, even supposing they were, the text-based representation
of the program describes the complete operations that construct the design with a degree
of comprehensiveness that cannot be economically represented on the canvas. For example,
consider the expression if bool then rect else circle. The contents of both branches
can immediately be read in the textual code. On the canvas, however, we can either show
the output of only one branch at a time, or show both branches (e.g., side-by-side) at the
cost of considerable screen space. In contrast, the textual code for the expression occupies
less than half of a single line of this paragraph.

For this reason, we are not eager to hide the code. Instead, we hope to simultaneously
leverage the strengths of textual code—its parsimonious representation of computation and
its tractability for free-form editing—along with the strength of manipulable visualization—
its concrete presentation and opportunities for tangible alteration.
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7.2 Limitations and Future Work

This work presented tools and techniques that enabled a number of designs to be programmed
entirely by manipulations on the output canvas. Nevertheless, there are many opportunities
for improvement on this work.

Below we discuss improvements specific to this SVG realization of output-directed pro-
gramming, improvements that concern both SVG and general programming simultaneously,
and general improvements not specific to SVG. SVG-specific concerns tend to involve the
UI, and general concerns involve the core implementation.

7.2.1 SVG-Specific Improvements

SKETCH-N-SKETCH might benefit from a number of SVG-specific improvements. The end
of Chapter 6 detailed features that SKETCH-N-SKETCH might need to create the remainder
of the Watch What I Do: Programming by Demonstration benchmark suite [1], including
support for text boxes as well as a comprehensive offering of list operations. A couple of
other missing but desirable graphics-specific features are worth mentioning.

SKETCH-N-SKETCH currently lacks a path tool, but a path tool is needed for many
real world designs. The mouse interaction to specify paths, however, is quite unique. To
generalize that interaction, we might imagine drawing tools that, instead of taking, e.g.,
two points, or a point and a pair of distances, take instead a sequence of mouse events on
the canvas. Those mouse events could be partially evaluated into a programmer-defined
template, generating an expression to be inserted in the program. At present, we leave the
specifics of this generalized drawing interface to future work.

Beyond missing tools, even within the SVG tooling presented in this work many reason-
able use cases remain to be implemented. Snaps (i.e., automatic alignments while dragging,
as in §3.1.3) are only available when drawing new shapes, not during mouse manipulations
after a shape has been drawn. Similarly, the programmer may only snap to point widgets or
offset amounts. Snaps are a more convenient interface than manually selecting features and
invoking MAKE EQUAL, thus it would be helpful if the programmer could also snap to (a)
derived features, e.g., the bottom right corner of a rectangle or the midpoint of a line, and
(b) just x or just y coordinates, to perform vertical or horizontal alignment as in common
shape editors such as PowerPoint.

Additionally, these derived shape features do appear on the canvas when a shape is hov-
ered, but the math to determine their positions is still hard-coded inside SKETCH-N-SKETCH.
Akin to type-directed API discovery (e.g., [37, 45, 20, 17]), a more flexible implementation
might instead look in the standard library and in the program for, e.g., functions of type
Rect — Point, apply all such functions to the selected shape, and show each resulting
point as a derived feature on the shape. The main reason these derived features are still
hard-coded is because there is extra semantic information associated with these features that
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cannot be captured in their primitive numeric values. For example, if SKETCH-N-SKETCH
discovered a function width : Rect — Num, that tells SKETCH-N-SKETCH that the func-
tion can convert a rectangle to some numeric feature of the rectangle, but it doesn’t tell
SKETCH-N-SKETCH where to display the line that the programmer might click to select that
feature. Similarly, direct manipulation of the center left point on a rectangle’s edge should
change the rectangle’s x position and width, but that information is not conveyed by the
existence of a function rectCLPoint : Rect — Point.

This work demonstrates designs with various kinds of one-dimensional repetition, but
SKETCH-N-SKETCH doesn’t yet have any pleasant way to affect designs with 2D repetition,
such as checkerboards. One possible solution might be to offer a version of REPEAT BY
INDEXED MERGE that generates a template function over two variables, ¢ and j, rather
than over just one variable 7.

The interaction for REORDER IN LIST could be improved. First, there is as of yet no
indication on the canvas of how the list elements are ordered. Simple numbering, displayed
when a list widget is hovered, might help. Second, a drag-and-drop interface for reordering
elements is preferable for reordering a list rather than choosing reordering possibilities from
a results menu. Nevertheless, it is not immediately clear how to offer such a drag-and-drop
reordering interface for elements that have already been positioned on the canvas by their
x and y coordinates. Although SKETCH-N-SKETCH does offer the tool to REORDER IN
L1sT, until the interaction is improved, list reordering remains an operation that is easier to
perform via text edits.

List widgets cannot yet be dragged to move all of the grouped elements simultaneously.
This interaction should be implemented.

In our example programs, we discovered that it is quite common for a point widget shown
on the canvas to actually be several point widgets stacked exactly on top of each other, often
because the same point is used multiple times in the program. If the programmer drags to
make a selection, they may inadvertently select multiple overlapping points. This can cause
transforms to fail or to produce unexpected results. How to resolve this Ul trouble is a bit of
a conundrum, because sometimes the programmer may actually want to select all overlapping
points to, e.g., equalize their positions if they were previously only incidentally aligned. At
a minimum, the UI should be improved so that it is clear when multiple overlapping points
have been selected, at least by visually declaring, e.g., “6 points selected.”

7.2.2  SVG and General Improvements

A number of possible improvements concern the current SVG setting but are likely to be
applicable to other domains as well. Here, we discuss three.

First, if we want to display intermediate execution products, there might be a lot of
them. Looking forward to general purpose programs, in the limit a program produces an
intermediate result for each processor instruction dispatched—that is quite a few! Even in
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our SVG domain with a limited number of widgets, clutter is still a problem. To date we
have attempted to reduce clutter in two ways: we hide widgets until necessary to display
them, i.e., when the mouse hovers over a relevant element, and we reposition the bounding
boxes of list and call widgets to minimize overlap. Even with these techniques, there is still
sometimes quite a bit of visual noise on the canvas. Reducing that visual noise may prove
to be an tradeoff with allowing functionality to be discoverable, and there may be no clear
optimum.

Second, the recursive drawing feature presented in this work is still fairly preliminary and
needs more development before it can work for examples besides the Koch snowflake. As
well, the automatic termination condition synthesis might offer more options than just fixed
depth. A synthesis algorithm that examines the execution environment, similar to that for
PBE holes, might prove useful for generating reasonable termination conditions.

Finally, we have not yet given great thought to optimizing performance. On larger
examples, re-running the code can be rather sluggish. To generalize this work to other
domains, more attention will need to be paid to efficient computation.

7.2.83  General Improvements

Within the features of SKETCH-N-SKETCH likely to be broadly applicable to many output-
directed programming domains, a number of improvements could be made. We discuss four.

First, the language in this work is an Elm-inspired [15] re-skinning of the more heavily
parenthesized 1ittle language of the original SKETCH-N-SKETCH [12]. The Elm-like syntax
improves readability considerably, but this work still lacks traditional ML features such
as algebraic data types or mutual recursion. This work’s optimistic assumption that any
number-number pair is an (x, y) point is inelegant and could be avoided with ADTs or record
types. Richer structural types are also more broadly useful to allow better representation of
arbitrary data structures.

Second, the different types of provenance in this work were sufficient to build the func-
tionality shown here, but, as discussed at the end of §5.2, each has certain limitations that
may warrant their replacement. In particular, SKETCH-N-SKETCH’S various provenance
mechanisms should be unified. The current provenance mechanisms also cannot unwind
computation to regenerate a value outside of its scope if the value was based on bound vari-
ables. This ability that would facilitate better MAKE EQUAL results in certain scenarios.
The functional program slicing work of Perera et al. [46] proposes tracing paired with an
unevaluation relation that might be adaptable for this purpose.

Third, all the program transformations presented in this work were hand-coded one-
by-one. In addition to being time consuming, the one-by-one hand coding has resulted in
varying levels of quality between the different transforms. We would like to see a domain-
specific language developed for the specification of output-directed code transformations to
(a) ease the implementation burden of creating a new transform, (b) increase confidence in
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transform correctness, (c) consistently generalize the handling of non-deterministic choices
during transformations—e.g., the shape drawing tools, ADD TO OuTPUT, and DUPE do
not offer multiple choices, but perhaps they should and they would if defined via a DSL—
and (d) enable a single generalized handling of interpreting transforms within an execution
environment—a number of transforms (notably MAKE EQUAL and RELATE) only operate on
program constants and cannot take advantage of the unique execution environments within
a function call, that is, we would like to be able to say, “Make this equal to that, but within
this function call rather than always.”

Finally, our example programs are starting to get longer than a page. Simply hovering
over a widget to see its expression highlighted in the code may no longer be sufficient: the
expression may be offscreen. Scrolling the code to the relevant expression may be reasonable,
as is done in, e.g., Posma, Jan Paul [48]. But in the case that a value is interpreted into
multiple expressions that are not all within one page of each other, some alternative UI for
handling the off-screen expressions may need to be developed.

7.2.4  Graphical Widgets for Non-Visual Domains

As we look towards taking output-directed programming beyond the graphics domain to
more general-purpose programs, a major question is how to visual the execution products of
non-visual domains. Textual pretty-printers for values are built into most languages, these
could be a starting point. Alternately, various ways to visual programs for pedagogical or
comprehension purposes have been explored in, e.g., [57, 27, 43] which might provide fruitful
ideas. How to usefully display and focus on the relevant portions of large data structures
will likely be a challenge.
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CHAPTER 8
CONCLUSION

Text-based programming is ubiquitous for its flexibility and power, but the text-based rep-
resentation of a program is abstract compared to the concrete values on which computation
is performed. To help the programmer understand the concrete operation of their program,
live programming efforts seek to visualize the concrete execution values in order to tighten
the feedback loop during the programming process. We take the live programming concept a
step further and make these visualized execution products not just visible, but manipulable,
a paradigm we call output-directed programming.

In this work, we presented an output-directed programming system that enables the
programmer create picture-drawing programs in a general-purpose (functional) programming
language with few or no text edits.

We implemented and demonstrated direct manipulation tools for drawing, relating, group-
ing, abstracting, and repeating shapes, as well as tools for refactoring the constructed pro-
gram. To facilitate tool operation, we used techniques for tracking value provenance to
associate output selections with relevant expressions in the program. In the UI, we exposed
various intermediate execution products on the canvas for manipulation, so the programmer
was not limited to manipulating their final output, and we offered focused editing, allowing
the programmer to insert nested definitions and create recursive functions.

We demonstrated the expressive power of these output-directed programming tools by
creating programs for 16 non-trivial designs using only the output-directed transformations.

In the long term, we envision that the programming process might become as immediate
and visual as direct-manipulation-based creativity applications—not just for shape-drawing
programs but for non-visual programs as well. This work is an early step on that journey.
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