
Submitted as part of TTIC 31210 Advanced Natural Language Processing, Spring 2017

CONTEXT-SENSITIVE PREDICTION OF HASKELL TYPE
SIGNATURES FROM NAMES

Brian Hempel
Department of Computer Science
University of Chicago
Chicago, IL 60637
brianhempel@uchicago.edu

1 ABSTRACT

Identifiers in programs contain semantic information that might be leveraged to build tools that help
programmers write code. This work explores using RNN models to predict Haskell type signatures
given the name of the entity being typed. A large corpus of real-world type signatures is gathered
from online sources for training and evaluation. In real-world Haskell files, the same type signature
is often immediately repeated for a new name. To attempt to take advantage of this repetition, a
varying attention mechanism was developed and evaluated. The RNN models explored show some
facility at predicting type signature structure from the name, but not the entire signature. The varying
attention mechanism provided little gain.

2 INTRODUCTION

The aim of this project is to be a step towards a larger vision of using natural language to generate
specification which can be transformed into function code by a program synthesizer.

NL/Code �!
ML

Specs �!
Synth

Code

Type signatures are a particular light-weight form of specification. Given the name of a function
or value in the programming language Haskell, the goal of this project is to predict the type of
the name. This setup approximates an autocomplete system in which a programmer may type the
function name and is then presented with suggestions for the function’s type signature.

Type signatures in Haskell are moderately complex and are usually provided as a declaration sepa-
rate from the actual definition of the named function or value. For example, the declaration:

maybeFind :: (a ! Bool) ! [a] ! Maybe a

declares that the value named maybeFind is a function that takes two arguments, the first is func-
tion that returns a boolean given a value of some generic type a, the second is a list of values of that
same type a, and the return type is Maybe a, an option type possibly containing a value of type a.

This work treats the type signature as a token stream to be predicted by a RNN seeded with an
encoding of the name. To facilitate reusability, name and type identifiers are broken into words for
which embeddings are learned. To take advantage of previous type declarations in a file, a varying
attention mechanism is employed. The system is evaluated on a large corpus of real-world Haskell
code.

3 RELATED WORK

Global language models of code may be queried in a token-by-token (or node-by-node) fashion
to facilitate code completion (Hindle et al., 2012; Raychev et al., 2016; Bielik et al., 2016; White
et al., 2015; Nguyen & Nguyen, 2015) (an approach also taken by class projects at other universi-
ties (Ginzberg et al., 2017; Das & Shah, 2015)). To generate larger pieces of code, another line of

1

to

specifications

take a step

names

Corrections and explorations after
submission displayed in blue.

Submitted as part of TTIC 31210 Advanced Natural Language Processing, Spring 2017

work attempts to translate natural language specifications into programs (Gu et al., 2016; Gvero &
Kuncak, 2015; Raghothaman et al., 2016), a recent approach (Yin & Neubig, 2017) that adapts the
particular sequence-to-sequence method of Baudanau et al. (Bahdanau et al., 2014) for the purpose
of generating moderately sized ASTs. Modular networks have also had some success (Rabinovich
et al., 2017).

This work may be viewed in between these two lines of work: like language modeling, the input
to the predictor comes directly from the code; like NL-to-code translation, the natural language
semantic content of the identifiers is to be leveraged to produce a result.

4 METHODS

This work models the problem as a serial next-token prediction problem, with tokens predicted by
a single-layer LSTM-RNN. The RNN is seeded with an encoding of the name to be assigned a
type. The first token prediction is triggered by applying a special start-of-signature token; prediction
proceeds apace from there. This work makes particular choices concerning the encoding of tokens
for generalizability, and incorporation of context to inform the prediction. These choices are detailed
below.

As predicting an entire type signature given only a name may not be generally achievable, this work
additionally explores predicting just the structure of the type signature.

4.1 GATHERING TYPE SIGNATURES

The top 1000 Haskell language repositories by “stars” were downloaded from Github. The reposito-
ries owned by the Haskell and Glasgow Haskell Compiler (GHC) organizations were placed into the
training set, and the remaining repositories were randomly assigned to form a total of 900 training,
100 development, and 100 test repositories. All files ending in .hs were run through the Haskell
parser in GHC 8.0.1 to extract top-level type declarations, from which uncommon meta-data (such
as infix declarations) was removed. Multiple names simultaneously assigned a single type were
split into separate declarations. Thus each extracted declaration consisted of a name and a type
signature for that name. 54,186 files (78%) were successfully parsed. Typeclass constraints were
removed from each type signature using a Python-based parser and normalization of type variable
names was performed (i.e. within each signature, the first type variable encountered was renamed
to a, the second to b, etc.). A small number of (0.6%) of signatures were long (> 256 characters)
or not parsable in Python and were discarded. The final dataset consists of 304,272, 20,962, and
25,619 signatures for training, development, and test, respectively.

For structure-only prediction, the type signatures were further normalized. Arrows, parentheses,
brackets, and commas were considered “structural” tokens and were left unchanged. Between struc-
tural tokens, runs of consecutive non-structural tokens were merged into a single type and assigned
a normalized name. For example, the type signature Maybe a ! (a ! Maybe b) !
Maybe b would be normalized to the structure A ! (B ! C) ! C.

4.2 TOKEN REPRESENTATION

To facilitate generalizability to unseen names, all tokens were segmented into words based on the
camel case convention and the presence of underscores. All words were further “stemmed” by
truncation to the first four characters. An embedding was assigned to each stemmed word. A token’s
representation was considered to be the average of the embeddings of its constituent stemmed words
(duplicate words weighted by frequency). Formally, if seg(y)

i

is the ith stemmed word in the
segmentation of y, and emb(seg(y)

i

) is the embedding for that word, then:

emb

tok

(y) =

1

|seg(y)|

|seg(y)|X

i=1

emb(seg(y)

i

)

Defining token embeddings in terms of constituent words reduces the number of needed embeddings
considerably. The 35,112 unique non-structural tokens in the training data are composed of only

2

Bahdanau

including a recent approach

800

Submitted as part of TTIC 31210 Advanced Natural Language Processing, Spring 2017

4,902 stemmed words. Similarly, the training data assigns types to 196,382 unique names which are
composed of only 21,317 stemmed words.

4.3 NAME ENCODING

The goal is to predict a type signature given the name of a function or value. Names are segmented
as above, and, again, the average of their embeddings is taken as their representation. Half of this
representation is used as the initial hidden state and the other half as the initial memory cell of the
LSTM. Consequently, words in names and words in types have separate embeddings, as embeddings
for words in names must be twice as large (words in types have embeddings of the same dimensions
as the LSTM hidden state).

4.4 LOSS HEURISTIC

Token predictions from the RNN are made by a simple dot product between the token embeddings
and and the RNN output. To train the network using log loss requires that the expected token be
assigned a probability. The output can be treated as a probability distribution using softmax:

P (y

t

) = softmax

�
(W (tok)

)

>h
t

�
= softmax

�
(W (word)

W

(word!token)
)

>h
t

�

where h
t

is the output of the RNN at time t and W (tok) is an embedding matrix with the token
embeddings in the columns. As each token embedding is a linear combination of several word
embeddings, W (tok)

= W (word)
W

(word!token), where W

(word!token) is a sparse matrix of di-
mensions |V

word

|⇥ |V
tok

| that performs this linear combination.

Because of limitations of the learning framework used, W (word)
W

(word!token) could not be ef-
ficiently calculated after each update to W (word). Therefore, for driving loss during training, a
heuristic was used instead:

P (y

t

) = softmax

�
(W 0(word)

)

>h
t

�

where W 0(word)
= W (word) when the expected token was a single word; otherwise the embedding

of the expected token was appended to W (word) to form W 0(word).

4.5 INCORPORATING CONTEXT

Repeated type signatures are common. To facilitate use of this information, the predicted embedding
h
t

in the above definitions is instead replaced with h
t

+ w

c

c
t

, where w

c

is a learned scalar and c
t

is a context vector defined as follows:

c
t

=

X

sig

prior

2context

X

y

i

2sig

prior

k ⇤ attn(sig
cur

, sig

prior

, i, t)emb

tok

(y

i

)

attn(sig

cur

, sig

prior

, i, t) =

kY

j=1

sim

�
(sig

cur

)

t�j

, (sig

prior

)

i�j

�

k = min(4, |sig
cur

|, |sig
prior

|) sim(x, y) = cosine sim

�
emb

tok

(x), emb

tok

(y)

�

That is, c
t

is a linear combination of the tokens in several prior signatures in the same file. The
weight for a context token is based the similarity of its prior tokens and the token immediately prior
to the token being predicted. The approach may be thought of as a soft n-gram model. The weight
is multiplied by k to capture the intuition that a longer match is more likely to be relevant. The
attention weights are not normalized to sum to one—the weight should only be high when it is
appropriate to copy tokens. Thus the magnitude of c

t

varies for each prediction.

Note that in the above formulation, the name being assigned a type is considered part of the signature
(as y0). The half of its embedding for seeding the RNN hidden layer is used. y1 is the start of type
symbol. Thus, k is always at least 2.

3

tokens

Context is the three prior
signatures within a file; or as
many as are available if near
the beginning of the file.

Possibly should have
been taken to the 1/k
power (geometric mean)
and then also learn
coefficients for the strength
of each value of k; lots
of variations could be
tried here.

Submitted as part of TTIC 31210 Advanced Natural Language Processing, Spring 2017

Table 1: Token prediction accuracy and whole signature prediction accuracy.

FULL VOCABULARY STRUCTURE ONLY
Copy LSTM +Attn Copy LSTM +Attn

Token Accuracy 43.1 46.1 47.6 55.6 73.7 75.5
Signature Accuracy 20.6 3.5 5.8 35.7 37.7 38.3

5 EXPERIMENTAL SETUP

The model described above was implemented and trained in DyNet (Neubig et al., 2017). DyNet’s
default LSTM variant uses peephole connections and couples the input and forget gates (Greff et al.,
2015). 150 dimensions were used for the hidden layer size and type word embeddings (300 for name
words). For each of signature and structure prediction, a model ignoring and a model incorporating
context was trained. Context included up to three immediately prior signatures in the same file.
Models were trained with Adam (Kingma & Ba, 2014) at a learning rate of 0.0002. Time did not
permit exploration of hyperparameters. Training was not halted at any principled time, however
all the models incorporating context were trained for a shorter amount of time compared to the
corresponding non-attentive model, so the improvement shown below is not unfair. Accuracy on
development also quickly plateaued, extra training is unlikely to alter the story. For each variation,
the model checkpoint with highest whole signature accuracy on half of the development data was
used for evaluation. The checkpoints used were trained on a minimum of 300,000 and maximum of
700,000 declarations.

6 RESULTS AND ANALYSIS

Table 1 displays the experimental results. The “Copy” baseline simply copies the previous type
signature token by token as the prediction. If there is no prior type signature, or when the current
signature extends beyond the previous signature, the end-of-signature token is repeatedly predicted.
For the RNN models, the prediction for the entire signature is produced by a simple greedy search,
selecting only the most probable token at each step.

The copy-from-previous baseline performs surprisingly well. The RNN models are able to improve
on the token prediction accuracy slightly, but the attention mechanism did not facilitate widespread
copying of the previous type signature as hoped. For predicting only the structure of a type signature,
the RNN without context is able to improve slightly on the copying baseline, using only the name
of the function to predict the structure of the type signature. The additional information provided by
the context provides a further slight improvement. However, both RNN models fail to significantly
outperform simple copying of the previous signature.

7 CONCLUSIONS AND FUTURE WORK

The structure prediction models were moderately successful at predicting some type signatures’
structures from their names, but, overall, the RNNs presented did not perform significantly better
than simply copying the previous type signature in a file. The proposed varying attention mecha-
nism designed to facilitate such copying in the neural setting did not have a significant effect—an
investigation of why should be performed and an alternative mechanism proposed.

Other improvements might also be made. A slower learning rate might be used—accuracy on the
development dataset quickly plateaued during training. Larger embeddings and a deeper LSTM
might also facilitate some improvements. The prediction model itself could be enriched as well.
Token-by-token prediction does not match the actual syntax tree structure of the type: a tree predic-
tion model might produce better results. Furthermore, the use of context might be improved. An
IDE providing an autocomplete service can be expected to only suggest names that are in scope;
similarly, the number of arguments applied to each type should be known. A smarter model could
use this information to constrain its output. Finally, an important next step for this work is to include
the prediction of typeclass constraints, as they commonly occur in Haskell programs.

4

above

Unkown tokens:
Test data is 6.1% unpredictable tokens (tokens not present in training). 27.3% of signatures are unpredictable because they contain a token not present during training.

That sets upper limits on the accuracy of the given approach— however current performance is far from those limits.

Able to get up to 53.1% (token) and 10.0% (whole sig) by:
- On token collision, predict most common token
- Use a Snowball stemmer, with word suffixes (adds a few more embeddings: 5817 type words, 23380 ident words)
 - Type words: "Typed.TypedDefinition'" => ["Type", "-d.", "Type", "-d", "Definit", "-ion", "'"]
 - Ident words: same, but all words downcased
- Longer training (2.9M signatures, ADAM, learning rate = 0.0002)

Submitted as part of TTIC 31210 Advanced Natural Language Processing, Spring 2017

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly
Learning To Align and Translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/

abs/1409.0473.

Pavol Bielik, Veselin Raychev, and Martin T. Vechev. PHOG: Probabilistic Model for Code. In
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, 2016.

Subhasis Das and Chinmayee Shah. Contextual Code Completion using Machine Learning. Stanford
CS229 Class Project, 2015.

Adam Ginzberg, Lindsey Kostas, and Tara Balakrishnan. Automatic Code Completion. Stanford
CS224n Class Project, 2017.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R. Steunebrink, and Jürgen Schmidhuber.
LSTM: A Search Space Odyssey. CoRR, abs/1503.04069, 2015. URL http://arxiv.org/

abs/1503.04069.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep API Learning. In Pro-
ceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, 2016.

Tihomir Gvero and Viktor Kuncak. Synthesizing Java Expressions From Free-form Queries. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh,
PA, USA, October 25-30, 2015, 2015.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. Devanbu. On the Natu-
ralness of Software. In 34th International Conference on Software Engineering, ICSE 2012, June
2-9, 2012, Zurich, Switzerland, 2012.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anasta-
sopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav
Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra,
Swabha Swayamdipta, and Pengcheng Yin. DyNet: The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980, 2017.

Anh Tuan Nguyen and Tien N. Nguyen. Graph-Based Statistical Language Model for Code. In 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 1, 2015.

Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract Syntax Networks for Code Genera-
tion and Semantic Parsing. CoRR, abs/1704.07535, 2017. URL http://arxiv.org/abs/

1704.07535.

Mukund Raghothaman, Yi Wei, and Youssef Hamadi. SWIM: Synthesizing What I Mean: Code
Search and Idiomatic Snippet Synthesis. In Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, 2016.

Veselin Raychev, Pavol Bielik, and Martin T. Vechev. Probabilistic Model for Code with Decision
Trees. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,
Amsterdam, The Netherlands, October 30 - November 4, 2016, 2016.

Martin White, Christopher Vendome, Mario Linares Vásquez, and Denys Poshyvanyk. Toward Deep
Learning Software Repositories. In 12th IEEE/ACM Working Conference on Mining Software
Repositories, MSR 2015, Florence, Italy, May 16-17, 2015, 2015.

5

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1503.04069
http://arxiv.org/abs/1503.04069
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1704.07535
http://arxiv.org/abs/1704.07535

Submitted as part of TTIC 31210 Advanced Natural Language Processing, Spring 2017

Pengcheng Yin and Graham Neubig. A Syntactic Neural Model for General-Purpose Code Genera-
tion. CoRR, abs/1704.01696, 2017. URL http://arxiv.org/abs/1704.01696.

6

http://arxiv.org/abs/1704.01696

	Abstract
	Introduction
	Related Work
	Methods
	Gathering Type Signatures
	Token Representation
	Name Encoding
	Loss Heuristic
	Incorporating Context

	Experimental Setup
	Results and Analysis
	Conclusions and Future Work

