
DEUCE 
A Lightweight UI For 
Structured Editing

Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh

 1

Problem

 2

Unstructured text
is clumsy

Problem

 3

Problem

 3

Problem

 3

Problem

 3

Not a program

Problem

 3

Not a program

Not a program

Problem

 3

Not a program

Not a program

Not a program
(hidden syntax error)

Problem for Beginners

 4

Problem for Beginners

 4

Problem for Beginners

 4

Structure must come from your head!

Problem for Experts

 5

Problem for Experts

 6

case
x

of

=

6
in

let
x

You

Spend time herding text!

Problem for Experts

 6

case
x

of

=

6
in

let
x

You

Spend time herding text!

Problem for Experts

 6

case
x

of

=

6
in

let
x

You

Spend time herding text!

Problem for Experts

 7

case

let

x

You

of

x = 6 in

Hard Truth

 8

Hard Truth

 8

Your program isn’t text.

Hard Truth

 8

Your program isn’t text.
It’s an AST.

Hard Truth

 9

Text Changes

Hard Truth

 9

Text Changes
≠

Hard Truth

 9

Text Changes
≠

AST Changes

Structured Editors

 10

Structured Editors

 10

Scratch
(Maloney et al. 2010; Resnick et al. 2009)

Structured Editors

 10

Scratch
(Maloney et al. 2010; Resnick et al. 2009)

TouchDevelop
(Tillmann et al. 2012)

Structured Editors

 10

UI challenges; Experts still use plain text

Scratch
(Maloney et al. 2010; Resnick et al. 2009)

TouchDevelop
(Tillmann et al. 2012)

Traditional Refactoring

 11

Traditional Refactoring

 11

Text-Select Menu Configure

Traditional Refactoring

 12(Deeplearning4j in Eclipse)

Text-Select Menu Configure

Traditional Refactoring

 13(Deeplearning4j in Eclipse)

Text-Select Menu Configure

Traditional Refactoring

 14(Deeplearning4j in Eclipse)

Text-Select Menu Configure

Traditional Refactoring

 15 15

Text-Select Menu Configure

Traditional Refactoring

 15

✗ Awkward

 15

Text-Select Menu Configure

Text-Select Menu Configure

Traditional Refactoring

 16 16

Traditional Refactoring

 17

✗ Awkward

Text-Select Menu Configure

 17

Traditional Refactoring

 17

✗

✗ Awkward

Text-Select Menu Configure

 17

Multiple

Selections

Traditional Refactoring

 17

✗

✗ Awkward

Text-Select Menu Configure

 17

Multiple

Selections

Traditional Refactoring

 17

✗

✗ Awkward

Text-Select Menu Configure

 17

Multiple

Selections

✗ Many

Options

Traditional Refactoring

 18

✗

✗ Awkward

Text-Select Menu Configure

 18

Multiple

Selections

✗ Many

Options

Traditional Refactoring

 18

✗
✗ Dialogs

✗ Awkward

Text-Select Menu Configure

 18

Multiple

Selections

✗ Many

Options

Traditional Refactoring

 19

✗
✗ Dialogs

✗ Awkward

Text-Select Menu Configure

 19

Multiple

Selections

✗ Many

Options

Deuce

 20

✗
✗ Dialogs

✗ Awkward

Text-Select Menu Configure

 20

Multiple

Selections

✗ Many

Options

Deuce

 21

✗ Dialogs

Structure
Select

Menu Configure

 21

✗ Many

Options

Deuce

 22

✗ Dialogs

Structure
Select

Short
Menu

Configure

 22

Deuce

 23

Structure
Select

Short
Menu

Defaults

 23

Demo

 24

Deuce

 74

Structure
Select

Short
Menu Defaults

 74

Deuce

 74

Structure
Select

Short
Menu Defaults

 74

Deuce

 74

Structure
Select

Short
Menu Defaults

 74

Deuce

 74

Structure
Select

Short
Menu Defaults

 74

 75

Deuce more effective
than Traditional?

 75

Deuce more effective
than Traditional?

Deuce preferred
to Traditional?

 76 76

Deuce

 76

Structure Select Short Menu Defaults

 76

Deuce

 77

Structure Select Short Menu Defaults

 77

Deuce “Box-Select Mode”

Traditional

 77

Structure Select Short Menu Defaults

 77

Deuce “Box-Select Mode”

Traditional “Text-Select Mode”

 78

Structure Select Short Menu Defaults

 78

Deuce “Box-Select Mode”

Traditional “Text-Select Mode”

 78

Structure Select Short Menu Defaults

 78

Deuce “Box-Select Mode”

Text Select

Traditional “Text-Select Mode”

 78

Structure Select Short Menu Defaults

 78

Deuce “Box-Select Mode”

Text Select Right-Click Menu

Traditional “Text-Select Mode”

 78

Structure Select Short Menu Defaults

 78

Deuce “Box-Select Mode”

Text Select Right-Click Menu Select Arguments

Traditional “Text-Select Mode”

 78

Structure Select Short Menu Defaults

 78

Deuce “Box-Select Mode”

Text Select Right-Click Menu Select Arguments Defaults

 79

Tutorial

 79

Head-to-Head Tasks (2x; once per mode)

Tutorial

 79

Mix & Match Tasks (free to use both modes)

Head-to-Head Tasks (2x; once per mode)

Tutorial

 79

Mix & Match Tasks (free to use both modes)

Head-to-Head Tasks (2x; once per mode)

Tutorial

Exit Survey

 80

Deuce more effective than Traditional?

 80

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Deuce more effective than Traditional?

 81

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Deuce more effective than Traditional?

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

 82

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Deuce more effective than Traditional?

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

 82

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Deuce more effective than Traditional?

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Traditional Better
p=0.057

 83

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Deuce more effective than Traditional?

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

 83

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Deuce more effective than Traditional?

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Both Similar
p=0.17

 84

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Deuce more effective than Traditional?

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

 84

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Deuce more effective than Traditional?

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

First
Encounter

Second
Encounter

Deuce doesn’t help discoverability

 85

Deuce more effective than Traditional?

0

1

2

3

4

Re
l T

im
e

(v
s t

as
k

m
ea

n)

First
Encounter

Second
Encounter

 86

Deuce more effective than Traditional?

0

1

2

3

4

Re
l T

im
e

(v
s t

as
k

m
ea

n)

First
Encounter

Second
Encounter

Both
Similar
p=0.52

 87

Deuce more effective than Traditional?

0

1

2

3

4

Re
l T

im
e

(v
s t

as
k

m
ea

n)

First
Encounter

Second
Encounter

 87

Deuce more effective than Traditional?

0

1

2

3

4

Re
l T

im
e

(v
s t

as
k

m
ea

n)

First
Encounter

Second
Encounter

Deuce
36% faster

p<0.01

 87

Deuce more effective than Traditional?

0

1

2

3

4

Re
l T

im
e

(v
s t

as
k

m
ea

n)

First
Encounter

Second
Encounter

Deuce
36% faster

p<0.01

Deuce may be faster once learned

 88

Deuce preferred to Traditional?

 88

Deuce preferred to Traditional?

Survey

 88

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

Deuce preferred to Traditional?

Survey

 89

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

Deuce preferred to Traditional?

Survey

 89

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

Deuce preferred to Traditional?

Modest subjective
preference for Deuce

Survey

 90

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

Deuce preferred to Traditional?

T D
4Squares

0

5

10

15

#P
ar
tic

ip
an

ts

T D
Lambda

T D
Overall

T D
4Squares

0

5

10

15

#P
ar
tic

ip
an

ts

T D
Lambda

T D
Overall

Modest subjective
preference for Deuce

Survey Observed

 91

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

Deuce preferred to Traditional?

T D
4Squares

0

5

10

15

#P
ar
tic

ip
an

ts

T D
Lambda

T D
Overall

T D
4Squares

0

5

10

15

#P
ar
tic

ip
an

ts

T D
Lambda

T D
Overall

Modest subjective
preference for Deuce

Survey Observed

 91

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

Deuce preferred to Traditional?

T D
4Squares

0

5

10

15

#P
ar
tic

ip
an

ts

T D
Lambda

T D
Overall

T D
4Squares

0

5

10

15

#P
ar
tic

ip
an

ts

T D
Lambda

T D
Overall

Almost everyone
used Deuce more

Modest subjective
preference for Deuce

Survey Observed

Mix & Match Tool Usage

 92

Mix & Match Tool Usage

 92

0% 5% 10% 15%
Mean Proportion of User's Refactorings

Rename

Make Equal with Single Variable

Introduce Variable(s)

Add Argument(s)

Create Function from Arguments

Move Definition(s)

Inline Definition(s)

Create Function by Merging Definitions

Create Function from Definition
Traditional
Deuce

0% 5% 10% 15%
Mean Proportion of User's Refactorings

Rename

Make Equal with Single Variable

Introduce Variable(s)

Add Argument(s)

Create Function from Arguments

Move Definition(s)

Inline Definition(s)

Create Function by Merging Definitions

Create Function from Definition
Traditional
Deuce

Mix & Match Tool Usage

 92

0% 5% 10% 15%
Mean Proportion of User's Refactorings

Rename

Make Equal with Single Variable

Introduce Variable(s)

Add Argument(s)

Create Function from Arguments

Move Definition(s)

Inline Definition(s)

Create Function by Merging Definitions

Create Function from Definition
Traditional
Deuce

Mix & Match Tool Usage

 93

0% 5% 10% 15%
Mean Proportion of User's Refactorings

Rename

Make Equal with Single Variable

Introduce Variable(s)

Add Argument(s)

Create Function from Arguments

Move Definition(s)

Inline Definition(s)

Create Function by Merging Definitions

Create Function from Definition
Traditional
Deuce

Mix & Match Tool Usage

 93

Single argument
transform

0% 5% 10% 15%
Mean Proportion of User's Refactorings

Rename

Make Equal with Single Variable

Introduce Variable(s)

Add Argument(s)

Create Function from Arguments

Move Definition(s)

Inline Definition(s)

Create Function by Merging Definitions

Create Function from Definition
Traditional
Deuce

Mix & Match Tool Usage

 93

Single argument
transform

Hypothesis:
Deuce better for
multi-argument
transformations

0% 5% 10% 15%
Mean Proportion of User's Refactorings

Rename

Make Equal with Single Variable

Introduce Variable(s)

Add Argument(s)

Create Function from Arguments

Move Definition(s)

Inline Definition(s)

Create Function by Merging Definitions

Create Function from Definition
Traditional
Deuce

Deuce vs Traditional

 94

Deuce vs Traditional

Traditional may be better for learning

 94

Deuce vs Traditional

Traditional may be better for learning

Deuce may be faster once learned

 94

Deuce vs Traditional

Traditional may be better for learning

Deuce may be faster once learned

Deuce strongly preferred

 94

 Future Work

 95

 Future Work

 95

UI concerns for larger programs

 Future Work

 95

UI concerns for larger programs

How to encourage refactoring?

 Future Work

 95

UI concerns for larger programs

How to encourage refactoring?

DSL for defining new transformations

 Future Work

 95

UI concerns for larger programs

How to encourage refactoring?

DSL for defining new transformations

Real languages in existing editors

Related Work

 96

Related Work

 96

Selection Assist + Box View  
(Murphy-Hill and Black 2008)

Related Work

 96

DNDRefactoring 
(Lee et al. 2013)

Selection Assist + Box View  
(Murphy-Hill and Black 2008)

Related Work

 96

DNDRefactoring 
(Lee et al. 2013)

Selection Assist + Box View  
(Murphy-Hill and Black 2008)

Greenfoot 
(Brown et al. 2016)

Barista 
(Ko and Myers 2006)

Graphite 
(Omar et al. 2012)

 97 97

 97

Structure
Select

 97

 97

Structure
Select

Short
Menu

 97

 97

Structure
Select

Short
Menu Defaults

 97

 97

Structure
Select

Short
Menu Defaults

 97

Deuce provides streamlined structural editing
in a familiar text-based environment.

 98

Structure
Select

Short
Menu Defaults

 98

Search “sketch n sketch” to play with Deuce

 98

Structure
Select

Short
Menu Defaults

 98

Search “sketch n sketch” to play with Deuce

Thank you!

 99

Extra Slides

 100

 101

D����: A Lightweight User Interface for Structured Editing ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden

In response,Create Func-
tion rewrites the de�-
nition to be a function
(shown on the right),
and previous uses of
connectedCircles are
rewritten to appropriate function calls (not shown).

The order of arguments to the function match the order of de�ni-
tions in the previous program, but that order was unintuitive—the
coordinates of the start and end points were interleaved. To �x
this, as shown above, the user selects the last two arguments and
the target position (i.e. the space enclosed by a blue rectangular
selection widget) between the �rst two, and selects the Reorder
Arguments tool so that the order of arguments becomes startX,
startY, endX, and endY (not shown). Calls to connectedCircles
are, again, rewritten to match the new order (not shown).

Example 3. In the program below, the user would like to organize
all design parameters and shapes within the single logo de�nition.
The user hovers over and selects the �ve de�nitions on lines 2
through 9, as well as the space on line 13, and selects the Move
De�nitions tool to move the de�nitions inside logo. The transfor-
mation manipulates indentation and delimiters appropriately in the
�nal code (not shown).

3 D����: DESIGN AND IMPLEMENTATION
In this section, we explain the design of D���� in more detail. First,
we de�ne a core language of programs where various structural
features can be selected. Then, we describe a user interface that
displays active transformations based on the set of structural se-
lections. Finally, we describe a set of general-purpose program
transformations that are provided in our current implementation.

L�����. To make the discussion of our design concrete, we choose
to work with a small functional language called L�����, de�ned in
Figure 1. A L����� program is a sequence of top-level de�nitions,
the last of which is called main. Notice that all (sub)expressions,
(sub)patterns, de�nitions (both at the top-level and locally via let),

program ::= • (def x0 e0) • · · · • (def main e)
e ::= c | x | (� p e) | (e1 e2) | [e1 |e2]

| (let p e1 e2) | (case e (p1 e1) · · ·)
p ::= c | x | [] | [p1 |p2]

Expressions e ::= • e • Pa�erns p ::= • p •

Figure 1: Syntax of L�����. The orange boxes and blue dots
identify features for structural selection.

EditorState = { code: Program, selections: Set Selection }
ActiveState = Active | NotYetActive | Inactive
Options = NoOptions | StringOption String
Result = { description: String, code: Program }

CodeTool =
{ name : String
, requirements : String
, active : EditorState -> ActiveState
, run : (EditorState, Options) -> List Result }

Figure 2: Code tool interface.

and branches of case expressions are surrounded in the abstract
syntax by orange boxes; these denote code items that will be exposed
for selection and deselection in the user interface. In addition, there
are target positions, denoted by blue dots, before and after every
de�nition, expression, and pattern in the program. Target positions
are “abstract whitespace” between items in the abstract syntax tree,
which will also be exposed for selection.

Code Tool Interface. Each code tool must implement the interface
in Figure 2. A tool has access to the EditorState, which contains a
Program and the Set of structural Selections within it. Based on
the EditorState, the active predicate speci�es whether the tool is
Active (ready to run and produce Result options), NotYetActive
(could be Active if given more valid selections), or Inactive (in-
valid based on the selections). For example, Move De�nitions is
NotYetActive if the user has selected one or more de�nitions but
no target position. When invoked via run, a tool has access to
the EditorState and con�guration Options, namely, an optional
String. This strategy supports the ubiquitous Rename tool. A more
full-featured interface may allow a more general set of con�gu-
ration parameters; the challenge would be to expose them using
a lightweight user interface. In our implementation, all transfor-
mations besides Rename require NoOptions. Each Result is a new
Program and a description of the changes.

This API between the user interface and code tool implementa-
tions is shallow, in the sense that a code tool implementation can
do whatever it wants with the selection information. A framework
for de�ning notions of transformation correctness would be a use-
ful line of work, but is beyond the scope of this paper. Currently,
code tools must be implemented inside the D���� implementation.
Designing a domain-speci�c language for writing transformations
would be useful, but is also beyond the scope of this paper.

 102

D����: A Lightweight User Interface for Structured Editing ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden

In response,Create Func-
tion rewrites the de�-
nition to be a function
(shown on the right),
and previous uses of
connectedCircles are
rewritten to appropriate function calls (not shown).

The order of arguments to the function match the order of de�ni-
tions in the previous program, but that order was unintuitive—the
coordinates of the start and end points were interleaved. To �x
this, as shown above, the user selects the last two arguments and
the target position (i.e. the space enclosed by a blue rectangular
selection widget) between the �rst two, and selects the Reorder
Arguments tool so that the order of arguments becomes startX,
startY, endX, and endY (not shown). Calls to connectedCircles
are, again, rewritten to match the new order (not shown).

Example 3. In the program below, the user would like to organize
all design parameters and shapes within the single logo de�nition.
The user hovers over and selects the �ve de�nitions on lines 2
through 9, as well as the space on line 13, and selects the Move
De�nitions tool to move the de�nitions inside logo. The transfor-
mation manipulates indentation and delimiters appropriately in the
�nal code (not shown).

3 D����: DESIGN AND IMPLEMENTATION
In this section, we explain the design of D���� in more detail. First,
we de�ne a core language of programs where various structural
features can be selected. Then, we describe a user interface that
displays active transformations based on the set of structural se-
lections. Finally, we describe a set of general-purpose program
transformations that are provided in our current implementation.

L�����. To make the discussion of our design concrete, we choose
to work with a small functional language called L�����, de�ned in
Figure 1. A L����� program is a sequence of top-level de�nitions,
the last of which is called main. Notice that all (sub)expressions,
(sub)patterns, de�nitions (both at the top-level and locally via let),

program ::= • (def x0 e0) • · · · • (def main e)
e ::= c | x | (� p e) | (e1 e2) | [e1 |e2]

| (let p e1 e2) | (case e (p1 e1) · · ·)
p ::= c | x | [] | [p1 |p2]

Expressions e ::= • e • Pa�erns p ::= • p •

Figure 1: Syntax of L�����. The orange boxes and blue dots
identify features for structural selection.

EditorState = { code: Program, selections: Set Selection }
ActiveState = Active | NotYetActive | Inactive
Options = NoOptions | StringOption String
Result = { description: String, code: Program }

CodeTool =
{ name : String
, requirements : String
, active : EditorState -> ActiveState
, run : (EditorState, Options) -> List Result }

Figure 2: Code tool interface.

and branches of case expressions are surrounded in the abstract
syntax by orange boxes; these denote code items that will be exposed
for selection and deselection in the user interface. In addition, there
are target positions, denoted by blue dots, before and after every
de�nition, expression, and pattern in the program. Target positions
are “abstract whitespace” between items in the abstract syntax tree,
which will also be exposed for selection.

Code Tool Interface. Each code tool must implement the interface
in Figure 2. A tool has access to the EditorState, which contains a
Program and the Set of structural Selections within it. Based on
the EditorState, the active predicate speci�es whether the tool is
Active (ready to run and produce Result options), NotYetActive
(could be Active if given more valid selections), or Inactive (in-
valid based on the selections). For example, Move De�nitions is
NotYetActive if the user has selected one or more de�nitions but
no target position. When invoked via run, a tool has access to
the EditorState and con�guration Options, namely, an optional
String. This strategy supports the ubiquitous Rename tool. A more
full-featured interface may allow a more general set of con�gu-
ration parameters; the challenge would be to expose them using
a lightweight user interface. In our implementation, all transfor-
mations besides Rename require NoOptions. Each Result is a new
Program and a description of the changes.

This API between the user interface and code tool implementa-
tions is shallow, in the sense that a code tool implementation can
do whatever it wants with the selection information. A framework
for de�ning notions of transformation correctness would be a use-
ful line of work, but is beyond the scope of this paper. Currently,
code tools must be implemented inside the D���� implementation.
Designing a domain-speci�c language for writing transformations
would be useful, but is also beyond the scope of this paper.

 103

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh

Figure 3: Example target positions.

Implementation in S��������S�����. We have chosen to im-
plement our design within S��������S����� [Chugh et al. 2016;
Hempel and Chugh 2016], an interactive programming system for
generating SVG images. Whereas S��������S����� provides ca-
pabilities for directly manipulating the output of a program, D����
provides capabilities for directly manipulating the code itself.

Direct code manipulation is particularly useful for a system like
S��������S����� for a couple reasons. First, while the existing
output-directed synthesis features in S��������S����� attempt to
generate program updates that are readable and which maintain
stylistic choices in the existing code, the generated code often re-
quires subsequent edits, e.g. to choose more meaningful names, to
rearrange de�nitions, and to override choices made automatically
by heuristics; D���� aims to provide an intuitive and e�cient inter-
face for performing such tasks. Furthermore, by allowing users to
interactively manipulate both code and output, we provide another
step towards the goal of direct manipulation programming systems
identi�ed by Chugh et al. [2016]. These two capabilities—direct
manipulation of code and output—are complementary.

S��������S����� is written in Elm (http://elm-lang.org/), a lan-
guage in which programs are compiled to JavaScript and run in the
browser. The project uses the Ace text editor (https://ace.c9.io/) for
manipulating L����� programs. (The second reason for the name
D���� is that it extends Ace.) We extended S��������S����� to
implementD����; our changes constitute approximately 9,000 lines
of Elm and JavaScript code. The new version (�0.6.2) is available at
http://ravichugh.github.io/sketch-n-sketch/.

3.1 User Interface
The goals of our user interface are, �rst, to expose structural code
selection widgets—corresponding to the code items and target posi-
tions in a L����� program—and, second, to display an interactive
menu of active transformations based on the set of selections.

So that the additional features provided by D���� do not in-
trude on the text-editing work�ow, we display structural selection
widgets when hovering over the code box only when the user is
holding down the Shift key. Hitting the Escape key at any time
deselects all widgets and clears any menus, returning the editor to
text-editing mode. This allows the user to quickly toggle between
editing modes during sustained periods in either mode. When not
using the Shift modi�er key, the editor is a standard, monospace
code editor with familiar, unrestricted access to general-purpose
text-editing features.

3.1.1 Structural Code Selection. The primary innovation in our
design is the ability to structurally select concrete source text cor-
responding to code items and target positions from the abstract
syntax tree of a program.

Code Items. Our current implementation draws an invisible “bound-
ing polygon” around the source text of each expression, which

tightly wraps the expression even when stretched across multiple
lines. These polygons serve as mouse hover regions for selection,
with the polygons of larger expressions drawn behind the (smaller)
polygons for the subexpressions such that all polygons for child ex-
pressions partially occlude those of their parents. Because complex
expressions in L����� are fully parenthesized, it is always unam-
biguous exactly where to start and end each polygon, and there are
always character positions that can be used to select an arbitrary
subexpression in the tree. Similarly, we create bounding polygons
for all patterns and de�nitions.

When hovering over an invisible selection polygon,D���� colors
the polygon to indicate that it has become the focus. Its transparency
and style is designed to resemble what might otherwise be expected
for text selection (cf. the screenshots in §2). Clicking a polygon
selects the code item, making it visible even after hovering away.
Hovering the mouse back to the polygon and clicking it again
deselects the code item.

Target Positions. The user interface also draws polygons for the
whitespace between code items for selecting target positions. Fig-
ure 3 (left) shows how our implementation draws whitespace poly-
gons slightly to the left of the beginning of a line, and until the end
of a line even if there are no characters on that line. Figure 3 (center)
shows whitespace polygons with non-zero width even when there
are no whitespace characters between adjacent code items.

Another concern is that many target positions in the abstract
syntax from Figure 1 describe the same space between code items.
For example, the expression [• 50 • • 70 •] on line 3 of Figure 3
contains both an after-50 and before-70 position. Because such
target positions between adjacent items are redundant, our imple-
mentation draws only one whitespace polygon. (This polygon is
not selected in any of the screenshots.)

A more interesting case is for the code items (def •p • • e •)
and (let •p • • e • · · ·); there is both an after-p target and a before-
e target. To allocate the whitespace between p and e, we take the
following approach. The space up to the �rst newline, if any, is
dedicated to after-p; the remaining is for before-e. If there is no
newline, then we do not expose any selection widget for before-e.
For comparison, notice how the whitespace from the end of line 2
to beginning of line 3 in Figure 3 (right) is split into two polygons,
but the whitespace from the end of line 3 to the beginning of line 4
in the Figure 3 (left) is not. In other settings, it may be worthwhile
to consider alternative approaches to the design decisions above.

3.1.2 Displaying Active Code Tools. Several program transforma-
tions may be Active based on the items and targets that are se-
lected. We design and implement a lightweight user interface for
identifying, invoking, and con�guring Active transformations.

Pop-up Panel. When the user has entered structured editing mode
(by pressing Shift) and selected at least one item, we automatically

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh

Figure 3: Example target positions.

Implementation in S��������S�����. We have chosen to im-
plement our design within S��������S����� [Chugh et al. 2016;
Hempel and Chugh 2016], an interactive programming system for
generating SVG images. Whereas S��������S����� provides ca-
pabilities for directly manipulating the output of a program, D����
provides capabilities for directly manipulating the code itself.

Direct code manipulation is particularly useful for a system like
S��������S����� for a couple reasons. First, while the existing
output-directed synthesis features in S��������S����� attempt to
generate program updates that are readable and which maintain
stylistic choices in the existing code, the generated code often re-
quires subsequent edits, e.g. to choose more meaningful names, to
rearrange de�nitions, and to override choices made automatically
by heuristics; D���� aims to provide an intuitive and e�cient inter-
face for performing such tasks. Furthermore, by allowing users to
interactively manipulate both code and output, we provide another
step towards the goal of direct manipulation programming systems
identi�ed by Chugh et al. [2016]. These two capabilities—direct
manipulation of code and output—are complementary.

S��������S����� is written in Elm (http://elm-lang.org/), a lan-
guage in which programs are compiled to JavaScript and run in the
browser. The project uses the Ace text editor (https://ace.c9.io/) for
manipulating L����� programs. (The second reason for the name
D���� is that it extends Ace.) We extended S��������S����� to
implementD����; our changes constitute approximately 9,000 lines
of Elm and JavaScript code. The new version (�0.6.2) is available at
http://ravichugh.github.io/sketch-n-sketch/.

3.1 User Interface
The goals of our user interface are, �rst, to expose structural code
selection widgets—corresponding to the code items and target posi-
tions in a L����� program—and, second, to display an interactive
menu of active transformations based on the set of selections.

So that the additional features provided by D���� do not in-
trude on the text-editing work�ow, we display structural selection
widgets when hovering over the code box only when the user is
holding down the Shift key. Hitting the Escape key at any time
deselects all widgets and clears any menus, returning the editor to
text-editing mode. This allows the user to quickly toggle between
editing modes during sustained periods in either mode. When not
using the Shift modi�er key, the editor is a standard, monospace
code editor with familiar, unrestricted access to general-purpose
text-editing features.

3.1.1 Structural Code Selection. The primary innovation in our
design is the ability to structurally select concrete source text cor-
responding to code items and target positions from the abstract
syntax tree of a program.

Code Items. Our current implementation draws an invisible “bound-
ing polygon” around the source text of each expression, which

tightly wraps the expression even when stretched across multiple
lines. These polygons serve as mouse hover regions for selection,
with the polygons of larger expressions drawn behind the (smaller)
polygons for the subexpressions such that all polygons for child ex-
pressions partially occlude those of their parents. Because complex
expressions in L����� are fully parenthesized, it is always unam-
biguous exactly where to start and end each polygon, and there are
always character positions that can be used to select an arbitrary
subexpression in the tree. Similarly, we create bounding polygons
for all patterns and de�nitions.

When hovering over an invisible selection polygon,D���� colors
the polygon to indicate that it has become the focus. Its transparency
and style is designed to resemble what might otherwise be expected
for text selection (cf. the screenshots in §2). Clicking a polygon
selects the code item, making it visible even after hovering away.
Hovering the mouse back to the polygon and clicking it again
deselects the code item.

Target Positions. The user interface also draws polygons for the
whitespace between code items for selecting target positions. Fig-
ure 3 (left) shows how our implementation draws whitespace poly-
gons slightly to the left of the beginning of a line, and until the end
of a line even if there are no characters on that line. Figure 3 (center)
shows whitespace polygons with non-zero width even when there
are no whitespace characters between adjacent code items.

Another concern is that many target positions in the abstract
syntax from Figure 1 describe the same space between code items.
For example, the expression [• 50 • • 70 •] on line 3 of Figure 3
contains both an after-50 and before-70 position. Because such
target positions between adjacent items are redundant, our imple-
mentation draws only one whitespace polygon. (This polygon is
not selected in any of the screenshots.)

A more interesting case is for the code items (def •p • • e •)
and (let •p • • e • · · ·); there is both an after-p target and a before-
e target. To allocate the whitespace between p and e, we take the
following approach. The space up to the �rst newline, if any, is
dedicated to after-p; the remaining is for before-e. If there is no
newline, then we do not expose any selection widget for before-e.
For comparison, notice how the whitespace from the end of line 2
to beginning of line 3 in Figure 3 (right) is split into two polygons,
but the whitespace from the end of line 3 to the beginning of line 4
in the Figure 3 (left) is not. In other settings, it may be worthwhile
to consider alternative approaches to the design decisions above.

3.1.2 Displaying Active Code Tools. Several program transforma-
tions may be Active based on the items and targets that are se-
lected. We design and implement a lightweight user interface for
identifying, invoking, and con�guring Active transformations.

Pop-up Panel. When the user has entered structured editing mode
(by pressing Shift) and selected at least one item, we automatically

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh

Figure 3: Example target positions.

Implementation in S��������S�����. We have chosen to im-
plement our design within S��������S����� [Chugh et al. 2016;
Hempel and Chugh 2016], an interactive programming system for
generating SVG images. Whereas S��������S����� provides ca-
pabilities for directly manipulating the output of a program, D����
provides capabilities for directly manipulating the code itself.

Direct code manipulation is particularly useful for a system like
S��������S����� for a couple reasons. First, while the existing
output-directed synthesis features in S��������S����� attempt to
generate program updates that are readable and which maintain
stylistic choices in the existing code, the generated code often re-
quires subsequent edits, e.g. to choose more meaningful names, to
rearrange de�nitions, and to override choices made automatically
by heuristics; D���� aims to provide an intuitive and e�cient inter-
face for performing such tasks. Furthermore, by allowing users to
interactively manipulate both code and output, we provide another
step towards the goal of direct manipulation programming systems
identi�ed by Chugh et al. [2016]. These two capabilities—direct
manipulation of code and output—are complementary.

S��������S����� is written in Elm (http://elm-lang.org/), a lan-
guage in which programs are compiled to JavaScript and run in the
browser. The project uses the Ace text editor (https://ace.c9.io/) for
manipulating L����� programs. (The second reason for the name
D���� is that it extends Ace.) We extended S��������S����� to
implementD����; our changes constitute approximately 9,000 lines
of Elm and JavaScript code. The new version (�0.6.2) is available at
http://ravichugh.github.io/sketch-n-sketch/.

3.1 User Interface
The goals of our user interface are, �rst, to expose structural code
selection widgets—corresponding to the code items and target posi-
tions in a L����� program—and, second, to display an interactive
menu of active transformations based on the set of selections.

So that the additional features provided by D���� do not in-
trude on the text-editing work�ow, we display structural selection
widgets when hovering over the code box only when the user is
holding down the Shift key. Hitting the Escape key at any time
deselects all widgets and clears any menus, returning the editor to
text-editing mode. This allows the user to quickly toggle between
editing modes during sustained periods in either mode. When not
using the Shift modi�er key, the editor is a standard, monospace
code editor with familiar, unrestricted access to general-purpose
text-editing features.

3.1.1 Structural Code Selection. The primary innovation in our
design is the ability to structurally select concrete source text cor-
responding to code items and target positions from the abstract
syntax tree of a program.

Code Items. Our current implementation draws an invisible “bound-
ing polygon” around the source text of each expression, which

tightly wraps the expression even when stretched across multiple
lines. These polygons serve as mouse hover regions for selection,
with the polygons of larger expressions drawn behind the (smaller)
polygons for the subexpressions such that all polygons for child ex-
pressions partially occlude those of their parents. Because complex
expressions in L����� are fully parenthesized, it is always unam-
biguous exactly where to start and end each polygon, and there are
always character positions that can be used to select an arbitrary
subexpression in the tree. Similarly, we create bounding polygons
for all patterns and de�nitions.

When hovering over an invisible selection polygon,D���� colors
the polygon to indicate that it has become the focus. Its transparency
and style is designed to resemble what might otherwise be expected
for text selection (cf. the screenshots in §2). Clicking a polygon
selects the code item, making it visible even after hovering away.
Hovering the mouse back to the polygon and clicking it again
deselects the code item.

Target Positions. The user interface also draws polygons for the
whitespace between code items for selecting target positions. Fig-
ure 3 (left) shows how our implementation draws whitespace poly-
gons slightly to the left of the beginning of a line, and until the end
of a line even if there are no characters on that line. Figure 3 (center)
shows whitespace polygons with non-zero width even when there
are no whitespace characters between adjacent code items.

Another concern is that many target positions in the abstract
syntax from Figure 1 describe the same space between code items.
For example, the expression [• 50 • • 70 •] on line 3 of Figure 3
contains both an after-50 and before-70 position. Because such
target positions between adjacent items are redundant, our imple-
mentation draws only one whitespace polygon. (This polygon is
not selected in any of the screenshots.)

A more interesting case is for the code items (def •p • • e •)
and (let •p • • e • · · ·); there is both an after-p target and a before-
e target. To allocate the whitespace between p and e, we take the
following approach. The space up to the �rst newline, if any, is
dedicated to after-p; the remaining is for before-e. If there is no
newline, then we do not expose any selection widget for before-e.
For comparison, notice how the whitespace from the end of line 2
to beginning of line 3 in Figure 3 (right) is split into two polygons,
but the whitespace from the end of line 3 to the beginning of line 4
in the Figure 3 (left) is not. In other settings, it may be worthwhile
to consider alternative approaches to the design decisions above.

3.1.2 Displaying Active Code Tools. Several program transforma-
tions may be Active based on the items and targets that are se-
lected. We design and implement a lightweight user interface for
identifying, invoking, and con�guring Active transformations.

Pop-up Panel. When the user has entered structured editing mode
(by pressing Shift) and selected at least one item, we automatically

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh

Figure 3: Example target positions.

Implementation in S��������S�����. We have chosen to im-
plement our design within S��������S����� [Chugh et al. 2016;
Hempel and Chugh 2016], an interactive programming system for
generating SVG images. Whereas S��������S����� provides ca-
pabilities for directly manipulating the output of a program, D����
provides capabilities for directly manipulating the code itself.

Direct code manipulation is particularly useful for a system like
S��������S����� for a couple reasons. First, while the existing
output-directed synthesis features in S��������S����� attempt to
generate program updates that are readable and which maintain
stylistic choices in the existing code, the generated code often re-
quires subsequent edits, e.g. to choose more meaningful names, to
rearrange de�nitions, and to override choices made automatically
by heuristics; D���� aims to provide an intuitive and e�cient inter-
face for performing such tasks. Furthermore, by allowing users to
interactively manipulate both code and output, we provide another
step towards the goal of direct manipulation programming systems
identi�ed by Chugh et al. [2016]. These two capabilities—direct
manipulation of code and output—are complementary.

S��������S����� is written in Elm (http://elm-lang.org/), a lan-
guage in which programs are compiled to JavaScript and run in the
browser. The project uses the Ace text editor (https://ace.c9.io/) for
manipulating L����� programs. (The second reason for the name
D���� is that it extends Ace.) We extended S��������S����� to
implementD����; our changes constitute approximately 9,000 lines
of Elm and JavaScript code. The new version (�0.6.2) is available at
http://ravichugh.github.io/sketch-n-sketch/.

3.1 User Interface
The goals of our user interface are, �rst, to expose structural code
selection widgets—corresponding to the code items and target posi-
tions in a L����� program—and, second, to display an interactive
menu of active transformations based on the set of selections.

So that the additional features provided by D���� do not in-
trude on the text-editing work�ow, we display structural selection
widgets when hovering over the code box only when the user is
holding down the Shift key. Hitting the Escape key at any time
deselects all widgets and clears any menus, returning the editor to
text-editing mode. This allows the user to quickly toggle between
editing modes during sustained periods in either mode. When not
using the Shift modi�er key, the editor is a standard, monospace
code editor with familiar, unrestricted access to general-purpose
text-editing features.

3.1.1 Structural Code Selection. The primary innovation in our
design is the ability to structurally select concrete source text cor-
responding to code items and target positions from the abstract
syntax tree of a program.

Code Items. Our current implementation draws an invisible “bound-
ing polygon” around the source text of each expression, which

tightly wraps the expression even when stretched across multiple
lines. These polygons serve as mouse hover regions for selection,
with the polygons of larger expressions drawn behind the (smaller)
polygons for the subexpressions such that all polygons for child ex-
pressions partially occlude those of their parents. Because complex
expressions in L����� are fully parenthesized, it is always unam-
biguous exactly where to start and end each polygon, and there are
always character positions that can be used to select an arbitrary
subexpression in the tree. Similarly, we create bounding polygons
for all patterns and de�nitions.

When hovering over an invisible selection polygon,D���� colors
the polygon to indicate that it has become the focus. Its transparency
and style is designed to resemble what might otherwise be expected
for text selection (cf. the screenshots in §2). Clicking a polygon
selects the code item, making it visible even after hovering away.
Hovering the mouse back to the polygon and clicking it again
deselects the code item.

Target Positions. The user interface also draws polygons for the
whitespace between code items for selecting target positions. Fig-
ure 3 (left) shows how our implementation draws whitespace poly-
gons slightly to the left of the beginning of a line, and until the end
of a line even if there are no characters on that line. Figure 3 (center)
shows whitespace polygons with non-zero width even when there
are no whitespace characters between adjacent code items.

Another concern is that many target positions in the abstract
syntax from Figure 1 describe the same space between code items.
For example, the expression [• 50 • • 70 •] on line 3 of Figure 3
contains both an after-50 and before-70 position. Because such
target positions between adjacent items are redundant, our imple-
mentation draws only one whitespace polygon. (This polygon is
not selected in any of the screenshots.)

A more interesting case is for the code items (def •p • • e •)
and (let •p • • e • · · ·); there is both an after-p target and a before-
e target. To allocate the whitespace between p and e, we take the
following approach. The space up to the �rst newline, if any, is
dedicated to after-p; the remaining is for before-e. If there is no
newline, then we do not expose any selection widget for before-e.
For comparison, notice how the whitespace from the end of line 2
to beginning of line 3 in Figure 3 (right) is split into two polygons,
but the whitespace from the end of line 3 to the beginning of line 4
in the Figure 3 (left) is not. In other settings, it may be worthwhile
to consider alternative approaches to the design decisions above.

3.1.2 Displaying Active Code Tools. Several program transforma-
tions may be Active based on the items and targets that are se-
lected. We design and implement a lightweight user interface for
identifying, invoking, and con�guring Active transformations.

Pop-up Panel. When the user has entered structured editing mode
(by pressing Shift) and selected at least one item, we automatically

 104

Head-to-Head Tasks

 105

Overall

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

1 2 1 2 1 2 1 2 1 2

Traditional
Deuce

Overall

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

1 2

Mixed effects model
to “control” for:
• participant skill
• trial number
• first/second encounter
• mouse/trackpad
• own/our computer

Head-to-Head Tasks

 105

Overall

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

1 2 1 2 1 2 1 2 1 2

Traditional
Deuce

Overall

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

1 2

p = 0.057 Mixed effects model
to “control” for:
• participant skill
• trial number
• first/second encounter
• mouse/trackpad
• own/our computer

Head-to-Head Tasks

 105

Overall

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

1 2 1 2 1 2 1 2 1 2

Traditional
Deuce

Overall

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

1 2

p = 0.057 Mixed effects model
to “control” for:
• participant skill
• trial number
• first/second encounter
• mouse/trackpad
• own/our computer

p = 0.17

Head-to-Head Tasks

 106

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh

Figure 4: Task completion rates pooled over both modes.

1Rect 2Circles 3Rects 4Rings Overall

0%

50%

100%

Co
m

pl
et

io
n

Ra
te

1 2 1 2 1 2 1 2 1 2

Traditional
Deuce

Figure 5: Head-to-head task completion rates by mode and
by subject’s �rst/second encounter with task. Overlaid lines
indicated pooled completion rates.

predictors for the mode (coded as 0 or 1), the trial number (1-8),
whether the trial was the second encounter with the task (0 or 1),
whether the participant used a mouse (0 or 1), whether the partici-
pant used their own computer (0 or 1), and the interaction of mode
with the second encounter (0, or 1 when D����Mode and a second
encounter). To model di�erences in user skill and task di�culty, a
random e�ect was added for each participant as well as each task,
and a random interaction was added to model di�erences in the
second encounter di�culty per task. Reported p-values are based
on Wald Z-statistics.

In the �t model, the coe�cient for mode was on the edge of
signi�cance (p=0.057), indicating that Traditional Mode did better
facilitate task completion on the �rst encounter with a task. Given
this, D���� Mode performed better than expected on the second
encounter (interaction term p=0.036), but not enough to con�dently
say that D���� Mode was absolutely better than Traditional Mode
for the second encounter (p=0.17). No other �xed e�ect coe�cients
approached signi�cance.

D���� Mode therefore seems to present a learning curve, but
may be just as e�ective as Traditional Mode once that learning
curve is overcome. This interpretation accords with the surveys: 5
participants wrote that Traditional Mode might be better for learn-
ing, and 4 participants—including 3 of the previous 5—said D����
Mode was better when they knew the desired transformation. How-
ever, the data may be alternatively explained if D����Mode on the
�rst encounter is a poor teacher, actively misleading users on the
second encounter with Traditional Mode.

Is either mode more e�ective for rapid editing? Among trials
successfully completed, the duration of each trial was measured
from the start of con�guration of the �rst refactoring to the end of
the �nal refactoring. The distribution of these timings is presented
in Figure 6, scaled relative to the mean duration for each task.

Figure 6: Head-to-head task durations for successfully com-
pleted trials, scaled relative to the mean time per task.

Again, to tease out if any of these di�erences are signi�cant,
from the same predictors described above two linear mixed e�ects
models were �t to predict (1) trial duration and (2) the logarithm
of trial duration (i.e. considering e�ects to be multiplicative rather
than additive). Percentile bootstrap p-values for the �xed e�ect
coe�cients were calculated from 10,000 parametric simulate-re�t
samples.1 For the �rst encounter with a task, Traditional Mode
was insigni�cantly faster (by 13 seconds, p=0.44; or 9.2%, p=0.52).
However, D���� Mode was on average 25 seconds (p=0.13) or 36%
(p<0.01) faster for the second encounter with a task, suggesting
that D����Mode may be faster once users become familiar with
the available tools. Most of the gain comes from less time spent
in con�guration—after discounting all idle thinking time between
con�gurations, the model still reveals an 18 second di�erence.

Is either mode more e�ective for achieving more with fewer
transforms? To determine if either mode facilitated more e�cient
use of interactions, the same mixed e�ects model was �t to predict
the number of refactorings invoked during each successful trial, as
well as the number of Undos. On the �rst encounter with a task,
Traditional Mode accounted for an average of 2.0 fewer refactorings
(p<0.01) and 2.1 fewer Undos (p<0.01), but on the second encounter
no signi�cant di�erence in number of refactorings or Undos was
indicated. As a second encounter with D����Mode is faster than
Traditional Mode, the speed gain thus appears to be explained by
faster invocations rather than fewer invocations.

Is either mode preferred by users? In which cases? The two �-
nal open-ended tasks allowed participants to mix-and-match the
two modes as they pleased. As shown in Figure 7, on both tasks the
overwhelming number of users performed a greater share of refac-
torings using D����Mode. We believe a main advantage of D����
Mode is that it simpli�es the con�guration of refactorings that re-
quire multiple arguments, as the user may select all the arguments
together before choosing a transformation from a short menu. In
Traditional Mode, the work�ow is stuttered: the user must select a
single argument, right-click to choose a transformation, then select
the remaining arguments. However, for a refactoring requiring only
a single argument, Traditional Mode is more streamlined: a user
may simply select the desired transformation immediately after
right-clicking on the �rst argument. Thus, for single-argument
refactorings, D���� Mode’s advantages may be limited. A break-
down of mode usage by popular tools (Figure 8) lends support to
1See https://www.rdocumentation.org/packages/lme4/versions/1.1-13/topics/bootMer

Head-to-Head Tasks

 107

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh

Figure 4: Task completion rates pooled over both modes.

Figure 5: Head-to-head task completion rates by mode and
by subject’s �rst/second encounter with task. Overlaid lines
indicated pooled completion rates.

predictors for the mode (coded as 0 or 1), the trial number (1-8),
whether the trial was the second encounter with the task (0 or 1),
whether the participant used a mouse (0 or 1), whether the partici-
pant used their own computer (0 or 1), and the interaction of mode
with the second encounter (0, or 1 when D����Mode and a second
encounter). To model di�erences in user skill and task di�culty, a
random e�ect was added for each participant as well as each task,
and a random interaction was added to model di�erences in the
second encounter di�culty per task. Reported p-values are based
on Wald Z-statistics.

In the �t model, the coe�cient for mode was on the edge of
signi�cance (p=0.057), indicating that Traditional Mode did better
facilitate task completion on the �rst encounter with a task. Given
this, D���� Mode performed better than expected on the second
encounter (interaction term p=0.036), but not enough to con�dently
say that D���� Mode was absolutely better than Traditional Mode
for the second encounter (p=0.17). No other �xed e�ect coe�cients
approached signi�cance.

D���� Mode therefore seems to present a learning curve, but
may be just as e�ective as Traditional Mode once that learning
curve is overcome. This interpretation accords with the surveys: 5
participants wrote that Traditional Mode might be better for learn-
ing, and 4 participants—including 3 of the previous 5—said D����
Mode was better when they knew the desired transformation. How-
ever, the data may be alternatively explained if D����Mode on the
�rst encounter is a poor teacher, actively misleading users on the
second encounter with Traditional Mode.

Is either mode more e�ective for rapid editing? Among trials
successfully completed, the duration of each trial was measured
from the start of con�guration of the �rst refactoring to the end of
the �nal refactoring. The distribution of these timings is presented
in Figure 6, scaled relative to the mean duration for each task.

1Rect 2Circles 3Rects 4Rings Overall

0

1

2

3

4

Re
l T

im
e

(v
s t

as
k

m
ea

n)

1 2 1 2 1 2 1 2 1 2

Traditional
Deuce

Figure 6: Head-to-head task durations for successfully com-
pleted trials, scaled relative to the mean time per task.

Again, to tease out if any of these di�erences are signi�cant,
from the same predictors described above two linear mixed e�ects
models were �t to predict (1) trial duration and (2) the logarithm
of trial duration (i.e. considering e�ects to be multiplicative rather
than additive). Percentile bootstrap p-values for the �xed e�ect
coe�cients were calculated from 10,000 parametric simulate-re�t
samples.1 For the �rst encounter with a task, Traditional Mode
was insigni�cantly faster (by 13 seconds, p=0.44; or 9.2%, p=0.52).
However, D���� Mode was on average 25 seconds (p=0.13) or 36%
(p<0.01) faster for the second encounter with a task, suggesting
that D����Mode may be faster once users become familiar with
the available tools. Most of the gain comes from less time spent
in con�guration—after discounting all idle thinking time between
con�gurations, the model still reveals an 18 second di�erence.

Is either mode more e�ective for achieving more with fewer
transforms? To determine if either mode facilitated more e�cient
use of interactions, the same mixed e�ects model was �t to predict
the number of refactorings invoked during each successful trial, as
well as the number of Undos. On the �rst encounter with a task,
Traditional Mode accounted for an average of 2.0 fewer refactorings
(p<0.01) and 2.1 fewer Undos (p<0.01), but on the second encounter
no signi�cant di�erence in number of refactorings or Undos was
indicated. As a second encounter with D����Mode is faster than
Traditional Mode, the speed gain thus appears to be explained by
faster invocations rather than fewer invocations.

Is either mode preferred by users? In which cases? The two �-
nal open-ended tasks allowed participants to mix-and-match the
two modes as they pleased. As shown in Figure 7, on both tasks the
overwhelming number of users performed a greater share of refac-
torings using D����Mode. We believe a main advantage of D����
Mode is that it simpli�es the con�guration of refactorings that re-
quire multiple arguments, as the user may select all the arguments
together before choosing a transformation from a short menu. In
Traditional Mode, the work�ow is stuttered: the user must select a
single argument, right-click to choose a transformation, then select
the remaining arguments. However, for a refactoring requiring only
a single argument, Traditional Mode is more streamlined: a user
may simply select the desired transformation immediately after
right-clicking on the �rst argument. Thus, for single-argument
refactorings, D���� Mode’s advantages may be limited. A break-
down of mode usage by popular tools (Figure 8) lends support to
1See https://www.rdocumentation.org/packages/lme4/versions/1.1-13/topics/bootMer

Head-to-Head Tasks

 108
Modest subjective preference for Deuce

“Which interaction worked better for the … task?”

T D
1Rect

0

5

10

15

#R
es
po

ns
es

T D
2Circles

T D
3Rects

T D
4Rings

T D
Overall

Mix & Match Tasks

 109

Deuce preferred by almost all users.

What did participants actually use?

T D
4Squares

0

5

10

15

#P
ar
tic

ip
an

ts

T D
Lambda

T D
Overall

