
PROGRAMMATIC AND DIRECT MANIPULATION	

TOGETHER AT LAST
Ravi Chugh, Brian Hempel,	

Mitchell Spradlin, Jacob Albers

Program

2

Program

2

Program

2

Changed
Program

Program

2

Changed
Program

Program

2

Changed
Program

Changed
Program
(again)

Program

2

Changed
Program

Changed
Program
(again)

Program

2

Changed
Program

Changed
Program
(again)

Changed
Program

(again again)

Program

2

Changed
Program

Changed
Program
(again)

Changed
Program

(again again)

Program

3

Program

3

Program

3

Program

3

Changed
Program

Program

3

Changed
Program

GOAL:	
Live Sync

Program

3

Changed
Program

Fast + Intuitive + Automatic

GOAL:	
Live Sync

SIMPLE EXAMPLE

4

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

5

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

6

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

7

x2 = 110

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

8

x2 = 110 x2’ = 155

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

8

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

x2’ = 155x2 = 110

GOAL	
Change

program so	
xi = 155

when i = 2

9

x2’ = 155

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

10

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = if i=2 then 155 else x0+i*sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

x2’ = 155

11

let (x0, y0, w, h, sep, n) =
 (95, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

x2’ = 155

12

let (x0, y0, w, h, sep, n) =
 (95, 120, 20, 90, 52.5, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

x2’ = 155

13

let (x0, y0, w, h, sep, n) =
 (65, 120, 20, 90, 55, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

x2’ = 155

14

let (x0, y0, w, h, sep, n) =
 (75, 120, 20, 90, 40, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

x2’ = 155

15

let (x0, y0, w, h, sep, n) =
 (95, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

x2’ = 155

16

155 = x0 + 2*sep
xi ↦ if i=2 then 155 else x0 + i * sep

x0 ↦ 75, sep ↦ 40 x0 ↦ 55, sep ↦ 50 x0 ↦ …, sep ↦ …

x0 ↦ 95 sep ↦ 52.5

x2’ = 155

17

xi ↦ if i=2 then 155 else x0 + i * sep

155 = x0 + 2*sep

x0 ↦ 75, sep ↦ 40 x0 ↦ 55, sep ↦ 50 x0 ↦ …, sep ↦ …

x0 ↦ 95 sep ↦ 52.5

x2’ = 155

GOAL	
Intuitive Changes

18

155 = x0 + 2*sep

x0 ↦ 75, sep ↦ 40 x0 ↦ 55, sep ↦ 50 x0 ↦ …, sep ↦ …

x0 ↦ 95 sep ↦ 52.5

x2’ = 155

xi ↦ if i=2 then 155 else x0 + i * sep

19

155 = x0 + 2*sep
xi ↦ if i=2 then 155 else x0 + i * sep

x0 ↦ 75, sep ↦ 40 x0 ↦ 55, sep ↦ 50 x0 ↦ …, sep ↦ …

x0 ↦ 95 sep ↦ 52.5

x2’ = 155

20

155 = x0 + 2*sep
xi ↦ if i=2 then 155 else x0 + i * sep

x0 ↦ 75, sep ↦ 40 x0 ↦ 55, sep ↦ 50 x0 ↦ …, sep ↦ …

x0 ↦ 95 sep ↦ 52.5

x2’ = 155

21

155 = x0 + 2*sep

x0 ↦ 95 sep ↦ 52.5

x2’ = 155

“Small Updates”

22

x0 ↦ 95 sep ↦ 52.5

x2’ = 155

?
23

x0 ↦ 95 sep ↦ 52.5

x2’ = 155

?GOAL	
Automatic

24

x2’ = 155

A HEURISTIC

x0 ↦ 95 sep ↦ 52.5

25

x2’ = 155

A HEURISTIC

x0 ↦ 95 sep ↦ 52.5

26

A HEURISTIC

27

A HEURISTIC

x0 ↦ … sep ↦ …

28

A HEURISTIC

x0 ↦ … sep ↦ …

29

A HEURISTIC

x0 ↦ … sep ↦ …

30

A HEURISTIC

x0 ↦ … sep ↦ …

31

A HEURISTIC

x0 ↦ … sep ↦ …

32

A HEURISTIC

x0 ↦ … sep ↦ …

33

A HEURISTIC

x0 ↦ … sep ↦ …

34

A HEURISTIC

x0 ↦ … sep ↦ …

35

A HEURISTIC

36

sepx0 x0 x0sep

37

Small Updates	
!

Heuristics	
!

Traces	
!

Simple Solver

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

x2 = 110

38

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3)
!

let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h
!

map boxi (zeroTo n)

x2 = 110

38

TRACES

39

let a = 3 in
let b = 5 in

a + b
⇓
8

TRACES

let a = 3 in
let b = 5 in

a + b
⇓
8

40

TRACES

let a = 3a in
let b = 5b in

a + b
⇓
8

41

TRACES

let a = 3a in
let b = 5b in

a + b
⇓
8a+b

42

x0 + 2*sepx2 =

43

110x0 + 2*sep110

x0 x0sep

x0 + 2*sepx2 =

44

110x0 + 2*sep110

x0 x0sep

45

x0 x0sep

=

x0 + 2*sepx2 = 110x0 + 2*sep110

46

x0 x0sep

= sepx0 + 2*

47

x0 x0sep

= sep155 x0 + 2*

= sep155 + 2*
x0

48

x0 x0sep

=155 + 2*30
x0

49

x0 x0sep

=155 + 2*30
x0

50

95

x0 x0sep

51

=155 + 2*30
x0

95

TRACE LANGUAGE

e ⇓ nt

52

TRACE LANGUAGE

e ⇓ nt

t ::= x | t1 + t2
| t1 * t2
| sin t
| pow t1 t2
 ...

52

TRACE LANGUAGE

e ⇓ nt

t ::= x

n’ = t

| t1 + t2
| t1 * t2
| sin t
| pow t1 t2
 ...

52

TRACES

let a = 3a in
let b = 5b in

a + b
!

53

TRACES

let a = 3a in
let b = (true ? 5b1 : 6b2) in

a + b

54

TRACES

let a = 3a in
let b = (true ? 5b1 : 6b2) in

a + b
⇓

8a+b1
54

t ::= x | t1 + t2
| t1 * t2
| sin t
| pow t1 t2
 ...

55

SOLVER

56

5*sin(x) = n

x*(y + y2) = n

x2 = n

✓

✓

✓

Can solve for x if x only occurs once.

SOLVER

56

5*sin(x) = n

x*(y + y2) = n
x*(x + y2) = n

x2 = n
x*x = n

✓

✓
✗

✓
✗

Can solve for x if x only occurs once.

SOLVER

56

5*sin(x) = n

x*(y + y2) = n
x*(x + y2) = n

x2 = n
x*x = n

✓

✓
✗

✓
✗

Can solve for x if x only occurs once.

Good for 80% of equations.

57

Small Updates	
!

Heuristics	
!

Traces	
!

Simple Solver

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

58

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

1. Evaluate 
with Traces

58

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics
1. Evaluate 
with Traces

58

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics
1. Evaluate 
with Traces

?

58

x0 sep

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics
1. Evaluate 
with Traces

x0

?

58

x0 sep

x0

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics
1. Evaluate 
with Traces

x0

sep

?

58

x0 sep

x0 sep

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics
1. Evaluate 
with Traces

x0

sep

x0

58

x0 sep x0

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics

3. Live Sync

1. Evaluate 
with Traces

x0

sep

x0

58

x0 sep x0

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics

3. Live Sync

1. Evaluate 
with Traces

x0

sep

x0User Changes Output;

58

x0 sep x0

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics

3. Live Sync

1. Evaluate 
with Traces

x0

sep

x0User Changes Output;

58

=155 + 2*30
x0

x0 sep x0

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics

3. Live Sync

Solve Trace Equation;

1. Evaluate 
with Traces

x0

sep

x0User Changes Output;

58

=155 + 2*30
x0

x0 sep x0

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics

3. Live Sync

Solve Trace Equation;

1. Evaluate 
with Traces

x0

sep

x0User Changes Output;

58

=155 + 2*30
x0

95

x0 sep x0

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics

3. Live Sync

Solve Trace Equation;
Apply Small Update;

1. Evaluate 
with Traces

x0

sep

x0

User Changes Output;

58

95

x0 sep x0

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics

3. Live Sync

Solve Trace Equation;
Apply Small Update;

1. Evaluate 
with Traces

x0

sep

x0

Re-run and Render

User Changes Output;

58

95

x0 sep x0

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics

3. Live Sync

Solve Trace Equation;
Apply Small Update;

1. Evaluate 
with Traces

x0

sep

x0

Re-run and Render

User Changes Output;

58

95

Sketch-n-Sketch

59

•

60

•

61

•

62

•

63

•

64

•

65

•

66

•

67

•

68

•

69

•

70

•

71

•

72

•

73

•

74

•

75

•

76

•

77

•

78

•

79

•

80

•

81

•

82

•

83

•

84

•

85

•

86

Custom User Interface Widgets

87

•

88

•

89

•

90

•

91

•

92

•

93

•

94

•

95

•

96

•

97

•

98

•

99

•

100

•

101

•

102

DEMOS

103

Just google “sketch n sketch”

Demos on YouTube

Sketch-n-Sketch
https://ravichugh.github.io/sketch-n-sketch

104

FUTURE WORK

105

106

• •
•
•

•

•
•
•
•

Traces

Heuristics Solver

• •
•
•

•

•
•
•
•

• •
•
•

•

•
•
•
•

107

Program

107

Program

108

108

108

Program

108

Program

109

Program

110

Program

PROGRAMMATIC AND DIRECT MANIPULATION	

IN OTHER DOMAINS

RELATED WORK

111

Old Program:	

Constants:	

User Action:

“Sketch”	

“Holes”	

“Example”

PROGRAM SYNTHESIS

112

LIVE SYNC

Numbers	
+ Heuristics

PROGRAM ← OUTPUT
String Origin Analysis for PHP	

by Wang et al.

String Literals

113

LIVE SYNC

constraints in
synthesis only

CONSTRAINTS

Sketchpad, ThingLab, Babelsberg, …

constraints in
language

114

BX PROGRAMMING

Boomerang, biXid, Beanbag…

LIVE SYNC

DSL ViewData

115

LIVE SYNC

λ-calc + DM

PROG. BY MANIPULATION

Victor, Apparatus, PBM for Layout, …

DM + DSL

116

Program

117

Program

117

Program

117

Program

117

Changed
Program

Program

117

Changed
Program Live Sync

Program

117

Changed
Program

Fast + Intuitive + Automatic

Live Sync

Program

117

Changed
Program

Fast + Intuitive + Automatic

Live Sync

Thank You!

let (x0, y0, w, h, sep, n) =
 (50, 120, 20, 90, 30, 3) !
let boxi i =
 let xi = x0 + i * sep in
 rect 'lightblue' xi y0 w h !
map boxi (zeroTo n)

2. Prepare for 
User Actions 

with Heuristics

3. Live Sync

Solve Trace Equation;	
Apply Small Update;

1. Evaluate 
with Traces

Re-run and Render

User Changes Output;

118

=155 + 2*30
x0

95

x0 sep

Extra Slides

119

USER STUDY

120

Video 0: Background (3 minutes). We described the rel-
ative strengths and weaknesses of programming and direct
manipulation for creating graphic designs. We then asked
background questions about programming and graphic de-
sign experience.

Video 1: Intro to Sketch-n-Sketch (9 minutes). We intro-
duced little, basic SVG features, unambiguous direct ma-
nipulation updates, and freezing constants.

Video 2: Examples (2 minutes). We showed two examples
where variables relate different attributes and unambiguous
direct manipulation updates preserve these relationships.

Video 3: Heuristics (6 minutes). We described the heuris-
tics for automatic disambiguation.

Video 4: Sliders (3 minutes). We demonstrated sliders as
a way to control otherwise hard-to-manipulate parameters.

Video 5: Side-by-Side Comparisons (22 minutes). This
section was designed to answer the question, “Are direct ma-
nipulation heuristics better or worse than simply providing a
slider for every constant in the program?”

We demonstrated a series of three tasks (Ferris Wheel,
Keyboard, and Tessellation), each starting with an initial de-
sign (the “Before” column in Figure 9) with the goal of edit-
ing it to realize a target design (the “After” column). We per-
formed each task twice: (A) using only sliders when needing
to break ambiguities (heuristics were disabled) and (B) rely-
ing on the heuristics and freezing constants to break ambi-
guities (sliders were not allowed). In both interaction modes,
unambiguous direct manipulation updates were allowed and
several programmatic edits were required.

After showing a task performed both ways, we asked
participants to rate the relative effectiveness of interac-
tion modes (A) and (B). We also asked participants to rate
each compared to a third mode: (C) using only program-
matic edits (no direct manipulation updates or sliders). Our
videos did not explicitly demonstrate mode (C). To con-
clude the study, our survey asked about final impressions of
SKETCH-N-SKETCH and prodirect manipulation.

Participants. We sought users with programming experi-
ence, because the current version of SKETCH-N-SKETCH
requires it. We advertised our study to undergraduate, Mas-
ters, and PhD students in the Computer Science Department
at the home institution of the authors. We held three separate,
in-person sessions where we showed the videos and admin-
istered anonymous surveys. A total of 25 students attended
the sessions and completed surveys. Each person was paid
$20 for their participation, except one person who refused
payment. The study was reviewed and approved by the In-
stitutional Review Board (IRB) at our home institution.

E.2 Results
Our participants had significant programming background,
with 64% reporting at least 3 years of experience. We also

Before After Histograms

Figure 9. The goal of each task (Ferris Wheel, Keyboard,
and Tessellation) was to convert the “Before” design into
the “After” design. For each task, users evaluated three
ways of dealing with ambiguities during the editing process:
(A) Sliders; (B) Heuristics; (C) Programmatic Manipulation
Only. The “Histograms” show the results.

found that participants, on average, generate 18% of their
graphic design work programmatically.

The side-by-side comparisons for the Ferris Wheel, Key-
board, and Tessellation tasks comprised the primary evalua-
tive aspect of our study. For each pair of interaction modes
(M1) and (M2), we provided a five-option, balanced rating
scale which we interpret as a number in the range [�2, 2],
where �2 and �1 represent strong and weak preference, re-
spectively, for (M1) and 1 and 2 represent weak and strong
preference, respectively, for (M2). The “Histograms” col-
umn of Figure 9 shows the survey results. Each edge be-
tween modes (M1) and (M2) of the triangle displays a his-
togram of the relative preferences between (M1) and (M2).
We calculated the means along with 95% bootstrap-t confi-
dence intervals,123 which are displayed with red lines along
the edges of the triangle.

Hypothesis 1. This table summarizes the mean prefer-
ence ratings, along with 95% confidence intervals, between
sliders (A) and heuristics (B) for each of the three tasks.

(A) vs. (B)
F �0.52 (�0.92, 0.01)
K 0.76 (0.26, 1.18)
T 0.20 (�0.20, 0.64)

Neither sliders nor heuristics
were preferred for the Fer-
ris Wheel task (F), heuristics
were weakly preferred over
sliders for the Keyboard task
(K), and neither was pre-
ferred for the Tessellation task (T). These data suggest that
even simple heuristics can provide an advantage over sliders.

TIMINGS

121

experience, we have found that manipulating rotation angles
in SKETCH-N-SKETCH often works better with explicit slid-
ers or using separate built-in rotation zones in our implemen-
tation, which we have not described in the paper.

5.2.3 Performance
In our experience, SKETCH-N-SKETCH is responsive for
many, but not all, of our examples. We have not attempted
to measure the observed frame rate of SKETCH-N-SKETCH,
which depends on several factors beyond our implementa-
tion. We have, however, measured the performance of four
critical aspects of our implementation: parsing and evalu-
ating a program, preparing for a user action, and solving
a pre-equation. We performed our experiments on an Intel
Core i7 (four cores, 2.6-GHz) running Mac OS X 10.9.5. For
“Parse,” “Eval,” and “Prepare,” we tested the operation five
times on every example using Firefox 45 and five times on
every example using Chrome 49. For “Solve,” we tested the
operation on Chrome 49 twice per pre-equation across all ex-
amples. The “Min” and “Max” columns report the minimum
and maximum times across all runs; “Med” and “Avg” report
the median and average across all runs. Detailed statistics by
example may be found in [13].

Operation Min Med Avg Max
Parse 9 ms 53 ms 77 ms 520 ms
Eval <1 ms 5 ms 12 ms 165 ms
Prepare 1 ms 13 ms 200 ms 6,789 ms
Solve <1 ms <1 ms <1 ms 14 ms

As the user drags the mouse during direct manipulation,
SKETCH-N-SKETCH repeatedly solves the trace equations
for the zone being manipulated and re-evaluates the program
to immediately display the interaction results. The average
time to “Solve” each trace equation is negligible, <1 ms on
average, because our solver uses a simple, syntax-directed
procedure. Re-evaluation takes longer, 12 ms on average.
Our implementation re-runs the entire program even though
much of the output may not change. In the future, it would
be useful to optimize the implementation to recompute only
the parts of the program needed (e.g. [11]).

The slowest operations reported above, “Parse” and “Pre-
pare,” are not run during direct manipulation. “Prepare” en-
capsulates the computation of both shape assignments and
triggers for all zones. We only perform this computation
when the program is run initially and after the user finishes
dragging a zone. Some of the data structures and algorithms
we use for computing candidate location assignments and
choosing from among them are rather naive and can be opti-
mized in the future.

6. Examples
We have used SKETCH-N-SKETCH to implement a variety
of designs. In this section, we will highlight observations
that pertain specifically to the combination of programmati-

cally defined graphics and direct manipulation. The imple-
mentations resemble typical programs in other functional
languages, but for the domain of SVG.

6.1 Programmatic Abstractions
Our current implementation does not allow new shapes to be
added directly using the GUI. Nevertheless, we have used
SKETCH-N-SKETCH to effectively program and manipulate
several designs that would be difficult to edit or maintain
using existing direct manipulation tools such as Illustrator
and PowerPoint. Figure 3 provides thumbnails for some of
the examples we will discuss.

Variables as Abstractions. SKETCH-N-SKETCH does not
attempt to infer any abstractions. It only propagates ab-
stractions that result from shared constants in the program.
Therefore, our little programs are structured to use vari-
ables (bound to constants) to encode explicit relationships
between attributes. Once these relationships have been de-
fined, the SKETCH-N-SKETCH editor preserves them dur-
ing direct manipulation. Many examples benefit from using
variables as abstractions, such as: our SKETCH-N-SKETCH
logo, which comprises three black polygons evenly spaced
by white lines; the logo for the Chicago Botanic Gar-
den (www.chicagobotanic.org), which contains several
Bézier curves reflected across a vertical axis; the Active
Transportation Alliance logo (www.activetrans.org),
which uses several points along a path to depict a city sky-
line; and a logo adapted from the Lillicon [4] project, where
several curves are used to define a semi-circle. For each
example, a single direct manipulation update changes all
related attributes, without the need for any secondary edits.

Derived Shapes. It is useful to define abstractions on top of
the primitive SVG shapes. We define an nStar function (and
include it in Prelude) that creates an n-sided star centered at
(cx,cy) and rotated rot radians in the clockwise direction,
where the distance from the center to the outer points is len1
and the distance to the inner points is len2.

(def nStar
(�(fill stroke w n len1 len2 rot cx cy) ...))

We use nStar to implement the City of Chicago flag, which
contains four evenly-spaced six-sided stars. By directly ma-
nipulating the POINT zones of a star in live mode, we can
control the outer and inner distances of all four stars. Mod-
ifying length parameters this way can be surprising. For ex-
ample, using negative lengths leads to interesting patterns,
even though one might not think to try them when program-
ming without immediate visual feedback.

Group Box Pattern. We occasionally find it useful to cre-
ate a transparent rectangle in the background with the width
w and height h of an entire design. Then, the BOTRIGHT-
CORNER zone of this box will, predictably, be assigned the
location set {w , h}. If we define all other shapes relative to

SOLVABILITY

122

As we will discuss below, supporting this syntactic class
of equations is already enough to enable program synthesis
for a variety of interesting examples. Our solver is easy to
implement and deploy in our Web-based setting and fast
enough to provide interactivity. Future work, however, may
incorporate more powerful solvers (such as MATLAB or
Z3 [14]) while taking care to ensure that synthesis is quick
enough to incorporate into an interactive, portable, direct
manipulation editor.

5.2 Interactivity
The goal of SKETCH-N-SKETCH is to provide immediate,
live synchronization updates in response to direct manip-
ulation changes. For a user action to be “successful” re-
quires that the particular zone be Active, that the solver com-
putes an update in response to the mouse manipulation, and
that the resulting update is applied to the program and re-
evaluated within a short period of time. We discuss each of
these aspects in turn based on measurements collected from
68 little programs of varying complexity, spanning more
than 2,000 lines of code in total. Below, we discuss summary
statistics across all examples; for reference, detailed tables
can be found in [13].

5.2.1 Active Zones
For any particular zone, our assignment algorithm may con-
sider zero, one, or more candidate location assignments
based on the traces of its attributes. A zone is Inactive when
there are zero candidates and is Active otherwise. Across
all of our examples, there were a total of 3,772 shapes with
14,106 zones, of which 991 (7%) were Inactive and 13,115
(93%) were Active.

Zones 14,106
Inactive 991 7%
Active 13,115

Unambiguous 4,856 34%
Ambiguous 8,259 59%

Ambiguity. Among Active zones, 4,856 (34% of all zones)
had exactly one candidate location assignment and 8,259
(59% of all zones) had more than one (3.83 candidates on
average). To provide responsive interaction, it is important
to deal with ambiguities because they are so frequent. Our
heuristics resolve ambiguities without user intervention. It
may be fruitful to explore other approaches, such as showing
multiple options for the user to choose from (particularly
when there are relatively few), or allowing the user to make
multiple user actions before attempting to infer an update.

5.2.2 Solving Equations
Next, we evaluate the solvability of equations that corre-
spond to Active zones. Consider a program with initial lo-
cation substitution ⇢ and shape assignment �, and a shape

v with an active zone ⇣. For each attribute ’k’ that ⇣ con-
trols, �(v)(⇣)(’k’) identifies a location ` to update in order
to solve the equation n+ d = t, where n

t is the original
value of v[’k’], ` is one of the locations in t, and d is the
change dictated by a user action. Across all examples, there
are 28,222 such (⇢, v, ⇣, `, n, t) tuples. Because traces are
often shared by multiple shapes and zones, we filter out tu-
ples that are identical modulo v and ⇣, leaving 4,574 unique
(⇢, `, n, t) tuples. In the following, we refer to each of these
tuples as a “pre-equation.”

Unique Pre-Equations 4,574
Outside Fragment 919 20%
Inside Fragment 3,655

No Solution for d = 1 194 4%
Solution for d = 1 3,461

No Solution for d = 100 438 10%
Solution for d = 100 3,023 66%

Syntactic Fragment. The majority of pre-equations (3,655,
which constitutes 80%) fall into the syntactic fragment han-
dled by our solver. We paid little attention to the structure
of traces when writing examples, so we have been surprised
that this number is so high. We fully expected to incorpo-
rate a more full-featured solver early in our work, but we
have been able to leave this to future work without severely
hampering the examples we have written so far.

The remaining 919 (20%) pre-equations fall outside the
fragment and are guaranteed not to be solvable. Our current
attribute assignment algorithm does not take this into con-
sideration and will sometimes assign such pre-equations to a
zone. It would be worthwhile to avoid making such choices
in the future.

Solvability. For each pre-equation (⇢, `, n, t), we would
like to know whether the solver can compute an update if the
user manipulates the given attribute to be n+ d. Rather than
symbolically analyzing the space of possible user changes,
we tested SolveOne(⇢, `, n+ d = t) with two concrete
values, namely, d = 1 and d = 100. Of the 3,655 pre-
equations in the fragment, 3,461 were solvable for d = 1

(i.e. a green highlight) and the remaining 194 (4% of all
unique pre-equations) were not (i.e. a red highlight). Note
that simply computing an update does not necessarily mean
that the change is acceptable to the user.

Of the 3,461 pre-equations solvable for d = 1, 3,023
(66% of all unique pre-equations) were also solvable with
d = 100. The remaining 438 (10% of all pre-equations) were
not. Upon inspection, several of these equations are of the
form n+ d = f(cos `), where f is some function of cos `.
Because the cosine function is bounded to the range [�1, 1],
the equation does not always have a solution. Indeed, there is
a mismatch between the interpretation of user updates in the
Cartesian plane and attributes like rotation that have more
natural representations in other coordinate systems. In our

AMBIGUITY

123

As we will discuss below, supporting this syntactic class
of equations is already enough to enable program synthesis
for a variety of interesting examples. Our solver is easy to
implement and deploy in our Web-based setting and fast
enough to provide interactivity. Future work, however, may
incorporate more powerful solvers (such as MATLAB or
Z3 [14]) while taking care to ensure that synthesis is quick
enough to incorporate into an interactive, portable, direct
manipulation editor.

5.2 Interactivity
The goal of SKETCH-N-SKETCH is to provide immediate,
live synchronization updates in response to direct manip-
ulation changes. For a user action to be “successful” re-
quires that the particular zone be Active, that the solver com-
putes an update in response to the mouse manipulation, and
that the resulting update is applied to the program and re-
evaluated within a short period of time. We discuss each of
these aspects in turn based on measurements collected from
68 little programs of varying complexity, spanning more
than 2,000 lines of code in total. Below, we discuss summary
statistics across all examples; for reference, detailed tables
can be found in [13].

5.2.1 Active Zones
For any particular zone, our assignment algorithm may con-
sider zero, one, or more candidate location assignments
based on the traces of its attributes. A zone is Inactive when
there are zero candidates and is Active otherwise. Across
all of our examples, there were a total of 3,772 shapes with
14,106 zones, of which 991 (7%) were Inactive and 13,115
(93%) were Active.

Zones 14,106
Inactive 991 7%
Active 13,115

Unambiguous 4,856 34%
Ambiguous 8,259 59%

Ambiguity. Among Active zones, 4,856 (34% of all zones)
had exactly one candidate location assignment and 8,259
(59% of all zones) had more than one (3.83 candidates on
average). To provide responsive interaction, it is important
to deal with ambiguities because they are so frequent. Our
heuristics resolve ambiguities without user intervention. It
may be fruitful to explore other approaches, such as showing
multiple options for the user to choose from (particularly
when there are relatively few), or allowing the user to make
multiple user actions before attempting to infer an update.

5.2.2 Solving Equations
Next, we evaluate the solvability of equations that corre-
spond to Active zones. Consider a program with initial lo-
cation substitution ⇢ and shape assignment �, and a shape

v with an active zone ⇣. For each attribute ’k’ that ⇣ con-
trols, �(v)(⇣)(’k’) identifies a location ` to update in order
to solve the equation n+ d = t, where n

t is the original
value of v[’k’], ` is one of the locations in t, and d is the
change dictated by a user action. Across all examples, there
are 28,222 such (⇢, v, ⇣, `, n, t) tuples. Because traces are
often shared by multiple shapes and zones, we filter out tu-
ples that are identical modulo v and ⇣, leaving 4,574 unique
(⇢, `, n, t) tuples. In the following, we refer to each of these
tuples as a “pre-equation.”

Unique Pre-Equations 4,574
Outside Fragment 919 20%
Inside Fragment 3,655

No Solution for d = 1 194 4%
Solution for d = 1 3,461

No Solution for d = 100 438 10%
Solution for d = 100 3,023 66%

Syntactic Fragment. The majority of pre-equations (3,655,
which constitutes 80%) fall into the syntactic fragment han-
dled by our solver. We paid little attention to the structure
of traces when writing examples, so we have been surprised
that this number is so high. We fully expected to incorpo-
rate a more full-featured solver early in our work, but we
have been able to leave this to future work without severely
hampering the examples we have written so far.

The remaining 919 (20%) pre-equations fall outside the
fragment and are guaranteed not to be solvable. Our current
attribute assignment algorithm does not take this into con-
sideration and will sometimes assign such pre-equations to a
zone. It would be worthwhile to avoid making such choices
in the future.

Solvability. For each pre-equation (⇢, `, n, t), we would
like to know whether the solver can compute an update if the
user manipulates the given attribute to be n+ d. Rather than
symbolically analyzing the space of possible user changes,
we tested SolveOne(⇢, `, n+ d = t) with two concrete
values, namely, d = 1 and d = 100. Of the 3,655 pre-
equations in the fragment, 3,461 were solvable for d = 1

(i.e. a green highlight) and the remaining 194 (4% of all
unique pre-equations) were not (i.e. a red highlight). Note
that simply computing an update does not necessarily mean
that the change is acceptable to the user.

Of the 3,461 pre-equations solvable for d = 1, 3,023
(66% of all unique pre-equations) were also solvable with
d = 100. The remaining 438 (10% of all pre-equations) were
not. Upon inspection, several of these equations are of the
form n+ d = f(cos `), where f is some function of cos `.
Because the cosine function is bounded to the range [�1, 1],
the equation does not always have a solution. Indeed, there is
a mismatch between the interpretation of user updates in the
Cartesian plane and attributes like rotation that have more
natural representations in other coordinate systems. In our

